Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Microfluidic Setup and Microcapsule Fabrication Method
2.3. Characterization
3. Results and Discussion
3.1. Microfluidic Fabrication of MPCMs
3.2. Effects of Preparation Conditions of MPCMs
3.2.1. Microcapsule Composition
3.2.2. Flow Rate of the Dispersed Phase
3.3. Cyclic Stability of MPCMs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustain-ability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Fredi, G.; Zimmerer, C.; Scheffler, C.; Pegoretti, A. Polydopamine-Coated Paraffin Microcapsules as a Multifunctional Filler Enhancing Thermal and Mechanical Performance of a Flexible Epoxy Resin. J. Compos. Sci. 2020, 4, 174. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.Z.; Li, Y. A review of available technologies for seasonal thermal energy storage. Sol. Energy 2014, 103, 610–638. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, Z.; Ghafoor, A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 2016, 115, 132–158. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and appli-cations. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, G.; Li, Z.; Yang, X. Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management. J. Mater. Chem. A 2020, 8, 14624–14633. [Google Scholar] [CrossRef]
- Bayés-García, L.; Ventolà, L.; Cordobilla, R.; Benages-Vilau, R.; Calvet, T.; Cuevas-Diarte, M. Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol. Energy Mater. Sol. Cells 2010, 94, 1235–1240. [Google Scholar] [CrossRef]
- Sun, N.; Xiao, Z. Synthesis and Performances of Phase Change Materials Microcapsules with a Polymer/BN/TiO2 Hybrid Shell for Thermal Energy Storage. Energy Fuels 2017, 31, 10186–10195. [Google Scholar] [CrossRef]
- Yu, Q.; Tchuenbou-Magaia, F.; Al-Duri, B.; Zhang, Z.; Ding, Y.; Li, Y. Thermo-mechanical analysis of microcapsules contain-ing phase change materials for cold storage. Appl. Energy 2018, 211, 1190–1202. [Google Scholar] [CrossRef] [Green Version]
- Alehosseini, E.; Jafari, S.M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H.; Picchioni, F. Material encapsulation in poly(methyl methacrylate) shell: A review. J. Appl. Polym. Sci. 2019, 136, 48039. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Song, G.; Li, W.; Fan, P.; Tang, G. UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol. Energy Mater. Sol. Cells 2010, 94, 1643–1647. [Google Scholar] [CrossRef]
- Xu, D.; Yang, R. Efficient preparation and characterization of paraffin-based microcapsules by emulsion polymerization. J. Appl. Polym. Sci. 2019, 136, 47552. [Google Scholar] [CrossRef]
- Chaiyasat, P.; Islam, M.Z.; Chaiyasat, A. Preparation of poly (divinylbenzene) microencapsulated octadecane by microsus-pension polymerization: Oil droplets generated by phase inversion emulsification. RSC Adv. 2013, 3, 10202–10207. [Google Scholar] [CrossRef]
- Yuan, H.; Bai, H.; Chi, M.; Zhang, X.; Zhang, J.; Zhang, Z.; Yang, L. A novel encapsulation method for phase change materials with a AgBr shell as a thermal energy storage material. Energies 2019, 12, 717. [Google Scholar] [CrossRef] [Green Version]
- Ahan, N.; Paksoy, H. Novel shapeable phase change material (PCM) composites for thermal energy storage (TES) applications. Solar Energ. Mater. Solar Cells 2018, 174, 380–387. [Google Scholar]
- Liu, J.; Lan, Y.; Yu, Z.; Tan, C.S.; Parker, R.M.; Abell, C.; Scherman, O.A. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials. Account. Chem. Res. 2017, 50, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.K.; Shum, H.C.; Rowat, A.C.; Lee, D.; Agresti, J.J.; Utada, A.S.; Weitz, D.A. Designer emulsions using microfluidics. Materials Today 2008, 11, 18–27. [Google Scholar] [CrossRef]
- Nie, Z.; Xu, S.; Seo, M.; Lewis, P.C.; Kumacheva, E. Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors. J. Am. Chem. Soc. 2005, 127, 8058–8063. [Google Scholar] [CrossRef]
- Zhang, J.; Coulston, R.J.; Jones, S.T.; Geng, J.; Scherman, O.A.; Abell, C. One-step fabrication of supramolecular micro-capsules from microfluidic droplets. Science 2012, 335, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.; Lee, H.M.; Kim, G.M.; Koh, W.G.; Cheong, I.W. acile and highly efficient microencapsulation of a phase change material using tubular microfluidics. Colloids Surf. Physicochem. Eng. Asp. 2013, 422, 61–67. [Google Scholar] [CrossRef]
- Nunes, J.K.; Tsai, S.S.H.; Wan, J.; A Stone, H. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D Appl. Phys. 2013, 46, 114002. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wang, Z.; Ma, W. Fabrication and characterization of a novel polyurethane microencapsulated phase change material for thermal energy storage. Progr. Org. Coat. 2021, 151, 106006. [Google Scholar] [CrossRef]
IPDI:MMA:C16 | Melting Enthalpy (J g−1) | Crystallization Enthalpy (J g−1) | Encapsulation Ratio (%) |
---|---|---|---|
n-hexadecane | 235.5 | 231.2 | - |
10:10:80 | 147.0 | 144.5 | 62.4 |
8:12:80 | 209.1 | 204.5 | 88.8 |
10:20:70 | 209.4 | 204.7 | 88.9 |
8:22:70 | 210.7 | 207.3 | 89.5 |
5:25:70 | 34.81 | 37.94 | 14.8 |
IPDI:MMA:C16 | Mass Loss (%) | Residue (%) | ||
---|---|---|---|---|
35 °C–200 °C | 200 °C–295 °C | 295 °C–500 °C | ||
10:10:80 | 45 | 22.34 | 30.8 | 1.82 |
08:12:80 | 83.91 | 6.32 | 9.03 | 0.73 |
10:20:70 | 6.02 | 84.99 | 7.99 | 0.99 |
8:22:70 | 81.34 | 10.57 | 6.82 | 1.29 |
5:25:70 | 43.47 | 7 | 48.4 | 1.02 |
Sample | Melting Enthalpy (J g−1) | Crystallization Enthalpy (J g−1) | Encapsulation Ratio C (%) |
---|---|---|---|
n-hexadecane | 235.5 | 231.2 | - |
PUAC16-24 | 222.6 | 220.1 | 94.5 |
PUAC16-36 | 218.4 | 215.9 | 92.7 |
PUAC16-48 | 211.2 | 208.8 | 89.7 |
PUAC16-60 | 204.7 | 202.6 | 86.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Dai, L.; Ye, L.; Yang, R.; Lu, Y. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage. Materials 2022, 15, 3708. https://doi.org/10.3390/ma15103708
Yang L, Dai L, Ye L, Yang R, Lu Y. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage. Materials. 2022; 15(10):3708. https://doi.org/10.3390/ma15103708
Chicago/Turabian StyleYang, Luxi, Linchuan Dai, Lu Ye, Rui Yang, and Yangcheng Lu. 2022. "Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage" Materials 15, no. 10: 3708. https://doi.org/10.3390/ma15103708
APA StyleYang, L., Dai, L., Ye, L., Yang, R., & Lu, Y. (2022). Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage. Materials, 15(10), 3708. https://doi.org/10.3390/ma15103708