Kinetics of Austenite Phase Transformations in Newly-Developed 0.17C-2Mn-1Si-0.2Mo Forging Steel with Ti and V Microadditions
Abstract
:1. Introduction
2. Material and Experiments
3. Results and Discussion
3.1. Theoretical Calculations
3.2. Dilatometric Studies
3.3. Microstructure Investigation
3.4. CCT Diagram
4. Conclusions
- the analyzed steel does not have high hardenability. The microstructure of the steel is mainly composed of ferrite and bainite with some retained austenite, especially for lower cooling rates. To obtain a fully bainitic or martensitic microstructure, higher cooling rates are necessary.
- the presence of high Si content leads to formation of bainitic ferrite in the microstructure of the steel. The excess carbon diffuses into the austenite increasing its thermal stability. This leads to the possibility of controlling the retained austenite amount using different heat treatments.
- for the lowest cooling rate, the prior formation of ferrite results in local formation of granular bainite. The microstructure where granular bainite is formed is complex. These areas contain lath bainite and martensitic–austenitic islands.
- at cooling rates from 0.1 °C/s to 60 °C/s the hardness does not change significantly. The difference between the lowest and highest values is 76 HV10. This is the result of the grain refinement and formation of bainite.
- the comparison of the calculated and experimental CCT diagram shows some discrepancy in the results. This means that using the computational approach it is important to take into account such discrepancies during calculations, especially in the case of newly developed steels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, P.; Liu, Z.; Du, F.; Misra, R.D.K.; Ren, W.; Yan, E. Multiphase bainite-martensite steels: The significant impact of niobium microalloying on structure and mechanical behavior. Mater. Sci. Eng. A 2018, 730, 262–269. [Google Scholar] [CrossRef]
- Barani, A.A.; Li, F.; Romano, P.; Ponge, D.; Raabe, D. Designe of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A 2007, 463, 138–146. [Google Scholar] [CrossRef]
- Zhong, N.; Wang, X.D.; Wang, L.; Rong, Y.H. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process. Mater. Sci. Eng. A 2009, 506, 111–116. [Google Scholar] [CrossRef]
- Skubisz, P.; Łukaszek-Sołek, A.; Sińczak, J.; Bednarek, S. Drop forging of HSLA steel with application of thermomechanical treatment. Arch. Civ. Mech. Eng. 2008, 8, 93–102. [Google Scholar] [CrossRef]
- Spena, P.R.; Firrao, D. Thermomechanical warm forging of Ti-V, Ti-Nb, and Ti-B microalloyed medium carbon steels. Mater. Sci. Eng. A 2013, 560, 208–215. [Google Scholar] [CrossRef]
- Opiela, M. Thermomechanical treatment of Ti-Nb-V-B micro-alloyed steel forgings. Mater. Teh. 2014, 48, 587–591. [Google Scholar]
- Rasouli, D.; Khameneh, S.; Akbarzadeh, A.; Daneshi, G.H. Effect of cooling rate on the microstructure and mechanical properties of microalloyed forming steel. J. Mater. Process. Tech. 2008, 206, 92–98. [Google Scholar] [CrossRef]
- Jahazi, M.; Eghbali, B. The influence of hot forming conditions on the microstructure and mechanical properties of two microalloyed steels. J. Mater. Process. Tech. 2001, 113, 594–598. [Google Scholar] [CrossRef]
- Opiela, M. Effect of thermomechanical processing of the microstructure and mechanical properties of Nb-Ti-V microalloyed steel. J. Mater. Eng. Perform. 2014, 9, 3379–3388. [Google Scholar] [CrossRef]
- Skubisz, P.; Adrian, H.; Sińczak, J. Controlled cooling of drop forged microalloyed-steel automotive crankshaft. Arch. Met. Mater. 2011, 56, 93–107. [Google Scholar] [CrossRef]
- Kuziak, R.; Pidvysotskyy, V.; Węglarczyk, S.; Pietrzyk, M. Bainitic steels as alternative for conventional carbon-manganese steels in manufacturing of fasteners—Simulation of production chain. Comput. Methods Mater. Sci. 2011, 11, 443–462. [Google Scholar]
- Grajcar, A.; Skrzypczyk, P.; Kuziak, R.; Gołombek, K. Effect of finishing hot-working temperature on microstructure of thermomechanically processed Mn-Al multiphase steels. Steel Res. Int. 2014, 85, 1058–1069. [Google Scholar] [CrossRef]
- Zrnik, J.; Stejskal, O.; Novy, Z.; Hornak, P. Relationship of microstructure and mechanical properties of TRIP-aided steel processed by press forging. J. Mater. Process. Tech. 2007, 192, 367–372. [Google Scholar] [CrossRef]
- Zhao, P.; Cheng, C.; Gao, G.; Hiu, W.; Misra, R.D.K.; Bai, B.; Weng, Y. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels. Mater. Sci. Eng. A 2016, 650, 438–444. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, K.; Gao, G.; Weng, Y. Mechanical properties of steel treated by Q–P–T process incorporating carbide-free-bainite/martensite multiphase microstructure. J. Iron Steel Res. Int. 2014, 21, 191–196. [Google Scholar] [CrossRef]
- Grajcar, A.; Radwański, K. Microstructural comparison of the thermomechanically treated and cold deformed Nb-microalloyed TRIP steel. Mater. Tehnol. 2014, 48, 679–683. [Google Scholar]
- Grajcar, A. Microstructure evolution of advanced high-strength TRIP-aided bainitic steel. Mater. Tehnol. 2014, 49, 715–720. [Google Scholar] [CrossRef]
- Grajcar, A.; Zalecki, W.; Burian, W.; Kozłowska, A. Phase equilibrium and austenite decomposition in advanced high-strength medium-Mn bainitic steels. Metals 2016, 6, 248. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Hojo, T.; Mizuno, Y. Torsional fatigue strength of newly developed case hardening TRIP-aided steel. Metals 2017, 7, 373. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, K.; Hojo, T.; Kobayashi, J. Critical assessment of TRIP-aided bainitic ferrite steels. Mater. Sci. Tech. 2017, 33, 2005–2009. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sato, S.; Arai, G. The effects of hot-forging on mechanical properties of ultra high-strength TRIP-aided steels. In Proceedings of the International Steel Technologies Symposium, Kaohsiung, Taiwan, 3–5 November 2008; pp. 1–9. [Google Scholar]
- Sugimoto, K.; Hojo, T.; Srivastava, A.K. An Overview of fatigue strength of case-hardening TRIP-aided martensitic steels. Metals 2018, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Keul, C.; Wirths, V.; Bleck, W. New bainitic steel for forgings. Arch. Civ. Mech. Eng. 2012, 12, 119–125. [Google Scholar] [CrossRef]
- Zaefferer, S.; Ohlert, J.; Bleck, W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 2004, 52, 2765–2778. [Google Scholar] [CrossRef]
- Uthaisangsuk, V.; Prahl, U.; Bleck, W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng.Fract. Mech. 2008, 487, 445–455. [Google Scholar] [CrossRef]
- Siodlak, D.; Lotter, U.; Kawalla, R.; Schwich, V. Modelling of the mechanical properties of low alloyed multiphase steels with retained austenite taking into account strain-induced transformation. Steel Res. Int. 2008, 79, 776–783. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Morales-Rivas, L. Vanadium effect on a medium carbon forging steel. Metals 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guhui, G.; Baoxiang, Z.; Cheng, C.; Ping, Z. Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process. Int. J. Fatigue 2016, 92, 203–210. [Google Scholar]
- Calderón, I.D.; Calvillo, R.; Lara, A. Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite. Mater. Sci. Eng. A 2015, 641, 215–224. [Google Scholar] [CrossRef]
- Li, Q.; Huang, X.; Huang, W. Strain hardening behavior and deformation characteristic of multiphase microstructure in a medium-carbon quenching and partitioning bainitic steel. Mater. Sci. Eng. A 2017, 707, 199–206. [Google Scholar] [CrossRef]
- Timokhina, I.B.; Hodghson, P.D.; Pereloma, E.V. Effect of alloying elements on the microstructure-property relationship in thermomechanically processed C-Mn-Si TRIP steels. Steel Res. 2002, 73, 274–279. [Google Scholar] [CrossRef]
- Traint, S.; Pichler, A.; Sierlinger, R.; Pauli, H.; Werner, E.A. Low-alloyed TRIP-steels with optimized strength, forming and welding properties. Steel Res. 2006, 77, 641–649. [Google Scholar] [CrossRef]
- Sente software Ltd. A collection of free downloadable papers on the development and application of JMatPro. 2005. Available online: http://www.sentesoftware.co.uk/biblio.html (accessed on 1 March 2021).
- ASTM A1033-04. In Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations; ASTM International: West Conshohocken, PA, USA; Available online: https://www.astm.org/ (accessed on 25 July 2020).
- Garcia de Andres, C.; Cavallero, F.G.; Capdevila, C.; Alvarez, L.F. Application of dilatometric analysis to the study of solid-solid phase transformation in steels. Mater. Character. 2002, 48, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Lei, M.; Wan, M.; Huang, C. Continuous cooling transformation behavior and bainite transformation kinetic of 23CrNi3Mo carburized steel. Metals 2021, 11, 48. [Google Scholar] [CrossRef]
- Qiao, Z.X.; Liu, Y.C.; Yu, L.M.; Gao, Z.M. Formation mechanism of granular bainite in a 30CRNi3MoV steel. J. Alloys Compd. 2009, 475. [Google Scholar] [CrossRef]
- Zhao, H.; Palmiere, E.J. Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel. Mater. Character. 2019, 158. [Google Scholar] [CrossRef]
- Kozeschnik, E.; Bhadeshia, H.K.D.H. Influence of silicon on cementite precipitation in steels. Mater. Sci. Technol. 2008, 24. [Google Scholar] [CrossRef]
- Suzuki, T.; Ono, Y.; Miyamoto, G.; Furuhara, T. Effects of Si and Cr on bainite microstructure of medium carbon steels. ISIJ International 2010, 50, 1476–1482. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gu, J.; Ham, L. Bainite transformation characteristics of high-Si hypereutectoid bearing steel. Metallogr. Microstruct. Anal. 2018, 7, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very strong bainite. Curr. Opin. Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Dobras, D.; Rutkowska-Gorczyca, M. Application of color etching to study the microstructure of TRIP steel after laser remelting. Weld. Technol. Rev. 2018, 90. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Knight, B.E.; Schuh, C.A. Six decades ofthe Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 1–18. [Google Scholar] [CrossRef]
C | Mn | P | S | Si | Mo | Cr | Ni | Ti | V |
---|---|---|---|---|---|---|---|---|---|
0.17 | 1.87 | 0.014 | 0.020 | 1.0 | 0.22 | 0.028 | 0.018 | 0.031 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morawiec, M.; Wojtacha, A.; Opiela, M. Kinetics of Austenite Phase Transformations in Newly-Developed 0.17C-2Mn-1Si-0.2Mo Forging Steel with Ti and V Microadditions. Materials 2021, 14, 1698. https://doi.org/10.3390/ma14071698
Morawiec M, Wojtacha A, Opiela M. Kinetics of Austenite Phase Transformations in Newly-Developed 0.17C-2Mn-1Si-0.2Mo Forging Steel with Ti and V Microadditions. Materials. 2021; 14(7):1698. https://doi.org/10.3390/ma14071698
Chicago/Turabian StyleMorawiec, Mateusz, Anna Wojtacha, and Marek Opiela. 2021. "Kinetics of Austenite Phase Transformations in Newly-Developed 0.17C-2Mn-1Si-0.2Mo Forging Steel with Ti and V Microadditions" Materials 14, no. 7: 1698. https://doi.org/10.3390/ma14071698