First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite
Abstract
:1. Introduction
2. Computational Model
3. Results and Discussion
3.1. Structural Properties
3.2. Electronic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed]
- Aïssa, B.; Memon, N.K.; Ali, A.; Khraisheh, M.K. Recent Progress in the Growth and Applications of Graphene as a Smart Material: A Review. Front. Mater. 2015, 2, 58. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals Heterostructures. Nature 2013, 499, 419. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D Materials and van der Waals Heterostructures. Science 2016, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-Dimensional van der Waals Heterostructures. Nat. Mater. 2017, 16, 170. [Google Scholar] [CrossRef]
- Lafond, A.; Nader, A.; Moëlo, Y.; Meerschaut, A.; Briggs, A.; Perrin, S.; Monceau, P.; Rouxel, J. X-ray Structure Determination and Superconductivity of a New Layered Misfit Compound with a Franckeite-like Stacking, [(Pb,Sb)S]2.28 NbS2. J. Alloy. Compd. 1997, 261, 114–122. [Google Scholar] [CrossRef]
- Kaden, R.; Wagner, G.; Sturm, C.; Schmidt-Grund, R.; von Wenckstern, H.; Prager, A.; Bente, K.; Grundmann, M. Synthesis and Physical Properties of Cylindrite Micro Tubes and Lamellae. Phys. Status Solidi. 2010, 247, 1335–1350. [Google Scholar] [CrossRef]
- Makovicky, E.; Petricek, V.; Dusek, M.; Topa, D. Crystal Structure of a Synthetic Tin-Selenium Representative of the Cylindrite Structure Type. Am. Mineral. 2008, 93, 1787–1798. [Google Scholar] [CrossRef]
- Sachdev, S.C.; Chang, L.L.Y. Phase Relations in the System Tin-Antimony-Lead Sulfides and the Synthesis of Cylindrite and Franckeite. Econ. Geol. 1975, 70, 1111–1122. [Google Scholar] [CrossRef]
- Molina-Mendoza, A.J.; Giovanelli, E.; Paz, W.S.; Niño, M.A.; Island, J.O.; Evangeli, C.; Aballe, L.; Foerster, M.; Van Der Zant, H.S.J.; Rubio-Bollinger, G. Franckeite as a Naturally Occurring van der Waals Heterostructure. Nat. Commun. 2017, 8, 14409. [Google Scholar] [CrossRef]
- Velicky, M.; Toth, P.S.; Rakowski, A.M.; Rooney, A.P.; Kozikov, A.; Woods, C.R.; Mishchenko, A.; Fumagalli, L.; Yin, J.; Zólyomi, V. Exfoliation of Natural van der Waals Heterostructures to a Single Unit Cell Thickness. Nat. Commun. 2017, 8, 14410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, K.; Yore, A.E.; Mou, T.; Jha, S.; Smithe, K.K.H.; Wang, B.; Pop, E.; Newaz, A.K.M. Photoresponse of Natural van der Waals Heterostructures. ACS Nano 2017, 11, 6024–6030. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kuo, K.H. Crystal Lattices and Crystal Chemistry of Cylindrite and Franckeite. Acta Crystallogr. Sect. A Found. Crystallogr. 1991, 47, 381–392. [Google Scholar] [CrossRef]
- Makovicky, E.; Hyde, B.G. Incommensurate, Two-Layer Structures with Complex Crystal Chemistry: Minerals and Related Synthetics. In Materials Science Forum; Trans Tech Publications, Ltd.: Kapellweg, Switzerland, 1992; Volume 100, pp. 1–100. [Google Scholar] [CrossRef]
- Matzat, E. Cannizzarite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 133–136. [Google Scholar] [CrossRef]
- Moëlo, Y.; Makovicky, E.; Mozgova, N.N.; Jambor, J.L.; Cook, N.; Pring, A.; Paar, W.; Nickel, E.H.; Graeser, S.; Karup-Møller, S. Sulfosalt Systematics: A Review. Report of the Sulfosalt Sub-Committee of the IMA Commission on Ore Mineralogy. Eur. J. Mineral. 2008, 20, 7–46. [Google Scholar] [CrossRef]
- Lian, X.; Niu, M.; Huang, Y.; Cheng, D. MoS2-CdS Heterojunction with Enhanced Photocatalytic Activity: A First Principles Study. J. Phys. Chem. Solids 2018, 120, 52–56. [Google Scholar] [CrossRef]
- Li, X.-B.; Guo, P.; Zhang, Y.-N.; Peng, R.-F.; Zhang, H.; Lui, L.-M. High Carrier Mobility of Few-Layer PbX (X = S, Se, Te). J. Mater. Chem. C 2015, 3, 6284–6290. [Google Scholar] [CrossRef]
- Jaszczak, J.; Rumsey, M.; Bindi, L.; Hackney, S.; Wise, M.; Stanley, C.; Spratt, J. Merelaniite, Mo4Pb4VSbS15, a New Molybdenum-Essential Member of the Cylindrite Group, from the Merelani Tanzanite Deposit, Lelatema Mountains, Manyara Region, Tanzania. Minerals 2016, 6, 115. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; He, H.; Tan, W.; Tao, Q.; Yao, J.; Xian, H.; Li, S.; Xi, J.; Zhu, J.; Xu, H. Incorporation of incompatible trace elements into molybdenite: Layered PbS precipitates within molybdenite. Am. Mineral. Pap. 2021, in press. [Google Scholar] [CrossRef]
- Li, J.; Yang, K.; Du, L.; Yi, J.; Huang, J.; Zhang, J.; He, Y.; Huang, B.; Miao, L.; Zhao, C.; et al. Nonlinear Optical Response in Natural van der Waals Heterostructures. Adv. Opt. Mater. 2020, 8, 2000382. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B 1999, 59, 7413. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced Capabilities for Materials Modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Evarestov, R.A.; Smirnov, V.P. Modification of the Monkhorst-Pack Special Points Meshes in the Brillouin Zone for Density Functional Theory and Hartree-Fock Calculations. Phys. Rev. B 2004, 70, 233101. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev. 1950, 80, 72–80. [Google Scholar] [CrossRef]
- Gaddemane, G.; Vandenberghe, W.G.; van de Put, M.L.; Chen, S.; Tiwari, S.; Chen, E.; Fischetti, M.V. Theoretical Studies of Electronic Transport in Mono- and Bi-Layer Phosphorene: A Critical Overview. arXiv 2018, 98, 115416. [Google Scholar]
- Guo, Q.; Wang, G.; Pandey, R.; Karna, S.P. Robust Band Gaps in the Graphene/Oxide Heterostructure: SnO/Graphene/SnO. Phys. Chem. Chem. Phys. 2018, 20, 17983–17989. [Google Scholar] [CrossRef] [PubMed]
- Maździarz, M. Comment on ‘The Computational 2D Materials Database: High-throughput modeling and discovery of atomically thin crystals’. 2D Mater. 2019, 6, 048001. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Kumar, A.; Srivastava, S.; Tankeshwar, K. van der Waals heterostructures based on allotropes of phosphorene and MoSe 2. Phys. Chem. Chem. Phys. 2017, 19, 22023–22032. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef] [Green Version]
- Bahk, J.-H.; Shakouri, A. Minority Carrier Blocking to Enhance the Thermoelectric Figure of Merit in Narrow-Band-Gap Semiconductors. Phys. Rev. B 2016, 93, 165209. [Google Scholar] [CrossRef]
- Kim, I.-H. Narrow Bandgap Thermoelectric Semiconductors. J. Korean Phys. Soc. 2018, 72, 1095–1109. [Google Scholar] [CrossRef]
- Krymowski, K. Electronic Mobilities of Two-Dimensional Transition Metal Dichalcogenides; The Ohio State University: Columbus, OH, USA, 2015; Available online: http://hdl.handle.net/1811/68625 (accessed on 10 December 2020).
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147. [Google Scholar] [CrossRef]
- Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M.S. Realization and Electrical Characterization of Ultrathin Crystals of Layered Transition-Metal Dichalcogenides. J. Appl. Phys. 2007, 101, 14507. [Google Scholar] [CrossRef] [Green Version]
- Fivaz, R.; Mooser, E. Mobility of Charge Carriers in Semiconducting Layer Structures. Phys. Rev. 1967, 163, 743. [Google Scholar] [CrossRef]
Computed Parameter | Bond Distances (Å) | |
---|---|---|
2D MoS2-PbS Heterostructure | Bulk MoS2-PbS | |
RS(H)–Pb(Q)-interplanar | 3.07 | 3.30 |
RS(H)–Mo(H)-intraplanar | 2.41 | 2.41 |
RS(Q)–Pb(Q)-intraplanar | 2.89 | 2.88 |
RS(Q)–Pb(Q)-interplanar | 2.73 | 3.16 |
Q-layer buckling height (δz) | 0.71 | 0.51 |
Q-layer buckling angle (α) | 13.5◦ | 9.8◦ |
C2D (N/m) | m* (me) | E1 (eV) | µ (103 cm2V−1s−1) | ||
---|---|---|---|---|---|
H-Q heterostructure | xe | 276.3 | 0.36 | 5.83 | 0.90 |
xh | 276.3 | 0.91 | 3.48 | 1.86 | |
ye | 190.1 | 0.83 | 5.50 | 0.30 | |
yh | 190.1 | 0.09 | 0.36 | 1180.0 | |
(free standing) H layer (MoS2 monolayer) | xe | 167.5 | 0.42 | 7.8 | 0.28 |
xh | 167.5 | 0.42 | 2.5 | 1.10 | |
ye | 164.1 | 0.83 | 6.9 | 0.15 | |
yh | 164.1 | 3.9 | 2.0 | 0.18 | |
(free standing) Q layer (PbS bilayer) | xe | 112.0 | 0.16 | 3.00 | 5.6 |
xh | 112.0 | 2.4 | 4.00 | 0.14 | |
ye | 26.6 | 0.56 | 1.45 | 1.6 | |
yh | 26.6 | 0.09 | 0.66 | 31.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degaga, G.D.; Kaur, S.; Pandey, R.; Jaszczak, J.A. First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite. Materials 2021, 14, 1649. https://doi.org/10.3390/ma14071649
Degaga GD, Kaur S, Pandey R, Jaszczak JA. First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite. Materials. 2021; 14(7):1649. https://doi.org/10.3390/ma14071649
Chicago/Turabian StyleDegaga, Gemechis D., Sumandeep Kaur, Ravindra Pandey, and John A. Jaszczak. 2021. "First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite" Materials 14, no. 7: 1649. https://doi.org/10.3390/ma14071649
APA StyleDegaga, G. D., Kaur, S., Pandey, R., & Jaszczak, J. A. (2021). First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite. Materials, 14(7), 1649. https://doi.org/10.3390/ma14071649