The Texture and Structure of the Melt-Spun Co2MnAl-Type Heusler Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marukame, T.; Kasahara, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M. High tunnel magnetoresistance in epitaxial Co2Cr0.6Fe0.4AlMgOCoFe tunnel junctions. IEEE Trans. Magn. 2005, 41, 2603–2605. [Google Scholar] [CrossRef]
- Oogane, M.; Sakuraba, Y.; Nakata, J.; Kubota, H.; Ando, Y.; Sakuma, A.; Miyazaki, T. Large tunnel magnetoresistance in magnetic tunnel junctions using Co2MnX (X = Al, Si) Heusler alloys. J. Phys. D 2006, 39, 834–841. [Google Scholar] [CrossRef]
- Tezuka, N.; Ikeda, N.; Miyazaki, A.; Sugimoto, S.; Kikuchi, M.; Inomata, K. Tunnel magnetoresistance for junctions with epitaxial full-Heusler Co2FeAl0.5Si0.5Co2FeAl0.5Si0.5 electrodes. Appl. Phys. Lett. 2006, 89, 112514. [Google Scholar] [CrossRef]
- Galanakis, I. Orbital magnetism in the half-metallic Heusler alloys. Phys. Rev. B 2005, 71, 012413. [Google Scholar] [CrossRef]
- Feitosa, L.M.; D’Sousa, N.; West, G.D.; Dong, H.B. Solidification Reaction Sequence of Co-Rich Nb-Al-Co Alloys. Metall. Mater. Trans. A 2017, 48A, 3814–3822. [Google Scholar] [CrossRef]
- Umetsu, R.Y.; Kobayashi, K.; Fujita, A.; Kainuma, R.; Ishida, K. Magnetic properties and stability of L21L21 and B2B2 phases in the Co2MnAlCo2MnAl Heusler alloy. J. Appl. Phys. 2008, 103, 07D718. [Google Scholar] [CrossRef]
- Pozo-López, G.; Condó, A.M.; Limandri, S.P.; Mutal, R.H.; Winkler, E.; Urreta, S.E.; Fabietty, L.M. Microstructure and magnetic properties of as-cast Ni2MnGa rods and tubes solidified by suction casting. Mater. Charact. 2019, 158, 109956. [Google Scholar] [CrossRef]
- Soderberga, O.; Brown, D.; Aaltioa, I.; Oksanena, J.; Syrena, J.; Pulkkinena, H.; Hannulaa, S.P. Microstructure and properties of Ni–Mn–Ga alloys produced by rapid solidification and pulsed electric current sintering. J. Alloy. Compd. 2011, 509, 5981–5987. [Google Scholar] [CrossRef]
- Rama Rao, N.V.; Gopalan, R.; Manivel Raja, M.; Arout Chelvane, J.; Majumdar, B.; Chandrasekaran, V. Magnetostructural transformation in melt spun Ni-Mn-Ga ribbons. Scr. Mater. 2007, 56, 405–408. [Google Scholar] [CrossRef]
- Gutierez, J.; Barandian, M.; Lazpita, P.; Segui, C.; Cesari, E. Magnetic properties of a rapidly quenched Ni–Mn–Ga shape memory alloy. Sens. Actuators A 2006, 129, 163–166. [Google Scholar] [CrossRef]
- Dearing, N.; Jenner, A.G. Magnetic and magnetoelastic properties of melt-spun Ni-Mn-Ga. IEEE Trans. Magn. 2006, 42, 78–80. [Google Scholar] [CrossRef]
- Sánchez Llamazares, J.L.; Sanchez, T.; Santos, J.; Perez, M.J.; Sanchez, M.L.; Hernando, B.; Escoda, L.; Suñol, J.J.; Varga, R. Magnetic field influence on the structural transformation in ferromagnetic shape memory alloy Mn50Ni40In10Mn50Ni40In10 melt spun ribbons. Appl. Phys. Lett. 2008, 92, 012513. [Google Scholar]
- Bhale, P.; Ari-Gur, P.; Koledov, V.; Shelyakov, A. Inhomogeneity and anisotropy in nanostructured melt-spun ti2 nicu shape-memory ribbons. Materials 2020, 13, 4606. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.P.; Curado, T.M.; Zeng, Z.; Lopes, J.G.; Rossinyol, E.; Park, J.M.; Schell, N.; Fernandes, F.B.; Kim, H.S. Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater. Des. 2020, 189, 108505. [Google Scholar] [CrossRef]
- Zeng, Z.; Cong, B.Q.; Oliveira, J.P.; Ke, W.C.; Schell, N.; Peng, B.; Qi, Z.W.; Ge, F.G.; Zhang, W.; Ao, S.S. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties. Addit. Manuf. 2020, 32, 101051. [Google Scholar] [CrossRef]
- Karpe, B.; Kosec, B.; Bizjak, M. Analyses of the melt cooling rate in the melt-spinning process. Achiev. Mater. Manuf. Eng. 2012, 51, 59–66. [Google Scholar]
- Wurmehl, S.; Martins Alves, M.C.; Morais, J.; Ksenofontov, V.; Teixeira, S.R.; Machado, G.; Fecher, G.H.; Felser, C.J. Structural properties of the quaternary Heusler alloy Co2Cr1−xFexAl. Phys. D Appl. Phys. 2007, 40, 1524. [Google Scholar] [CrossRef]
- Goryczka, T. EBSD studies of microstructure and texture in Ni–Ti–Co shapememory strip and ribbon. J. Microsc. 2010, 237, 263–266. [Google Scholar] [CrossRef]
- Diko, P.; Kavečanský, V.; Piovarči, S.; Ryba, T.; Vargova, Z.; Varga, R. Microstructure of the NiMnGa heusler alloys prepared by suction casting and melt-spinning. Mater. Sci. Forum 2017, 891, 33–40. [Google Scholar] [CrossRef]
- Huang, S.C.; Laforce, R.P.; Ritter, A.M.; Goehner, R.P. Rapin solidification characteristics in melt spinning a Ni-based superalloy. Metall. Trans. A 1985, 16, 1773–1779. [Google Scholar] [CrossRef]
- Herreraa, C.; de Limab, N.B.; Kliaugaa, A.M.; Padilha, A.F. Microstructure and texture of duplex stainless steel after melt-spinning processing. Mater. Charact. 2008, 5, 79–83. [Google Scholar] [CrossRef]
- Blank, M.; Caesar, C.H.; Koster, U. Microstructure and mechanical properties of rapidly solidified copper alloys. In Rapidly Quenched Metals, 1st ed.; Steeb, S., Warlimont, H., Eds.; Elsevier B.V., Imprint: North-Holland, The Netherlands, 1985; Volume I, pp. 883–886. [Google Scholar]
- Boettinger, W.J.; Coriell, S.R. Science and technology of the supercooled melt. In NATO ASI Series E-No. 114, 1st ed.; Sahm, P.R., Jones, H., Adams, C.M., Eds.; Martinus Nijhoff: Dordrecht, The Netherlands, 1986; pp. 81–85. [Google Scholar]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys; CRC Press: Boca Raton, FL, USA, 1981; pp. 215–235. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diko, P.; Kavečanský, V.; Ryba, T.; Frolová, L.; Varga, R.; Vargová, Z. The Texture and Structure of the Melt-Spun Co2MnAl-Type Heusler Alloy. Materials 2021, 14, 501. https://doi.org/10.3390/ma14030501
Diko P, Kavečanský V, Ryba T, Frolová L, Varga R, Vargová Z. The Texture and Structure of the Melt-Spun Co2MnAl-Type Heusler Alloy. Materials. 2021; 14(3):501. https://doi.org/10.3390/ma14030501
Chicago/Turabian StyleDiko, Pavel, Viktor Kavečanský, Tomáš Ryba, Lucia Frolová, Rastislav Varga, and Zuzana Vargová. 2021. "The Texture and Structure of the Melt-Spun Co2MnAl-Type Heusler Alloy" Materials 14, no. 3: 501. https://doi.org/10.3390/ma14030501
APA StyleDiko, P., Kavečanský, V., Ryba, T., Frolová, L., Varga, R., & Vargová, Z. (2021). The Texture and Structure of the Melt-Spun Co2MnAl-Type Heusler Alloy. Materials, 14(3), 501. https://doi.org/10.3390/ma14030501