The Impact of Hydrogenation on Structural and Superconducting Properties of FeTe0.65Se0.35 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Properties
3.2. Superconducting Properties
3.3. EPR Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eremets, M.I.; Drozdov, A.P. High-temperature conventional superconductivity. Phys. Uspekhi 2016, 59, 1154–1160. [Google Scholar] [CrossRef]
- Gor’kov, L.P.; Kresin, V.Z. Colloquium: High pressure and road to room temperature superconductivity. Rev. Mod. Phys. 2018, 90, 011001. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Naumov, I.I.; Hoffmann, R.; Ashcroft, N.W.; Hemley, R.J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA 2017, 114, 6990–6995. [Google Scholar] [CrossRef] [Green Version]
- Syed, H.M.; Webb, C.J.; Gray, E.M. Hydrogen-modified superconductors: A review. Prog. Solid State Chem. 2016, 44, 20–34. [Google Scholar] [CrossRef]
- Knobloch, J.; Padamsee, H. Flux trapping in niobium cavities during breakdown events. In Proceedings of the 8th Workshop on RF Superconductivity, INFN, Padova, Italy, 6–8 October 1997; pp. 337–344. [Google Scholar]
- Vallet, C.; Boloré, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H. Flux trapping in superconducting cavities. In Proceedings of the Third European Particle Accelerator Conference, Berlin, Germany, 24–28 March 1992; Frontières: Gif-sur-Yvette, France; Volume 2, pp. 1295–1297. [Google Scholar]
- Bobylev, I.B.; Gerasimova, E.G.; Zyuzeva, N.A.; Terent’ev, P.B. Effect of hydrogen intercalation on the critical parameters of YBa2Cu3Oy. Phys. Met. Metallogr. 2017, 118, 954–964. [Google Scholar] [CrossRef]
- Hanna, T.; Muraba, Y.; Matsuishi, S.; Igawa, N.; Kodama, K.; Shamoto, S.; Hosono, H. Hydrogen in layered iron arsenides: Indirect electron doping to induce superconductivity. Phys. Rev. B 2011, 84, 024521. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Machida, M. First-principles studies for the hydrogen doping effects on iron-based superconductors. J. Phys. Soc. Jpn. 2011, 80, 073705. [Google Scholar] [CrossRef] [Green Version]
- Obolenskii, M.A.; Beletskii, V.I.; Chashka, K.B.; Basteev, A.V. Enhancement of the superconducting state in the 2H-NbSe2 hydrogen system. Sov. J. Low Temp. Phys. 1984, 10, 402–403. [Google Scholar]
- Chashka, K.B.; Obolensky, M.A.; Beletsky, V.I.; Beilinson, V.N. Heat capacity of the NbSe2-hydrogen system. Low Temp. Phys. 1986, 12, 865–869. [Google Scholar]
- Burkhanov, G.S.; Lachenkov, S.A.; Kononov, M.A.; Vlasenko, V.A.; Mikhailova, A.B.; Korenovskii, N.L. Hydrogen intercalation of compounds with FeSe and MoSe2 layered crystal structures. Inorg. Mater. Appl. Res. 2017, 8, 759–762. [Google Scholar] [CrossRef]
- Cui, Y.; Hu, Z.; Zhang, J.-S.; Ma, W.; Ma, M.-W.; Ma, Z.; Wang, C.; Yan, J.-Q.; Sun, J.-P.; Cheng, J.-G.; et al. Ionic-liquid-gating induced protonation and superconductivity in FeSe, FeSe0.93S0.07, ZrNCl, 1T-TaS2 and Bi2Se3. China Phys. Lett. 2019, 36, 077401. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, Z.; Tamagai, T. Review of annealing effects and superconductivity in Fe1-yTe1-xSe superconductors. Supercond. Sci. Technol. 2019, 32, 103001. [Google Scholar] [CrossRef] [Green Version]
- Friederichs, G.M.; Wörsching, M.P.B.; Johrendt, D. Oxygen-annealing effects on superconductivity in polycrystalline Fe1+xTe1-ySey. Supercond. Sci. Technol. 2015, 28, 095005. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.Z.; Wang, N.Z.; Lei, B.; Ying, J.J.; Zhu, C.S.; Sun, Z.L.; Cui, J.H.; Meng, F.B.; Shang, C.; Ma, L.K.; et al. FeSe–based superconductors with a superconducting transition temperature of 50 K. New J. Phys. 2018, 20, 123007. [Google Scholar] [CrossRef]
- Prokhvatilov, A.I.; Meleshko, V.V.; Bondarenko, S.I.; Koverya, V.P.; Wiśniewski, A. The effect of sorption of air and hydrogen components on the structural characteristics of superconducting single crystals FeTe0.65Se0.35. Low Temp. Phys. 2020, 46, 181–186. [Google Scholar] [CrossRef]
- Yagotintsev, K.A.; Legchenkova, I.V.; Stetsenko, Y.E.; Zinoviev, P.V.; Zoryansky, V.N.; Prokhvatilov, A.I.; Strezhechny, M.A. Saturation of C60 fullerite with hydrogen: Study of the adsorption crossover. Low Temp. Phys. 2012, 38, 952–956. [Google Scholar] [CrossRef]
- Tsurkan, V.; Deisenhofer, J.; Günther, A.; Kant, C.; Klemm, M.; von Nidda, H.-A.K.; Schrettle, F.; Loidl, A. Physical properties of FeSe0.5Te0.5 single crystals grown under different conditions. Eur. Phys. J. B 2011, 79, 289–299. [Google Scholar] [CrossRef]
- Sivakov, A.G.; Bondarenko, S.I.; Prokhvatilov, A.I.; Timofeev, V.P.; Pokhila, A.S.; Koverya, V.P.; Dudar, I.S.; Link, S.I.; Legchenkova, I.V.; Bludov, A.N.; et al. Microstructural and transport properties of superconducting FeTe0.65Se0.35 crystals. Supercond. Sci. Technol. 2017, 30, 015018. [Google Scholar] [CrossRef] [Green Version]
- Gawryluk, D.J.; Fink-Finowicki, J.; Wisniewski, A.; Puzniak, R.; Domukhovski, V.; Diduszko, R.; Kozlowski, M.; Berkowski, M. Growth conditions, structure and superconductivity of pure and metal-doped FeTe1−xSex single crystals. Supercond. Sci. Technol. 2011, 24, 065011. [Google Scholar] [CrossRef] [Green Version]
- Wittlin, A.; Aleshkevych, P.; Przybylińska, H.; Gawryluk, D.J.; Dłużewski, P.; Berkowski, M.; Puźniak, R.; Gutowska, M.U.; Wiśniewski, A. Microstructural magnetic phases in superconducting FeTe0.65Se0.35. Supercond. Sci. Technol. 2012, 25, 065019. [Google Scholar] [CrossRef] [Green Version]
- Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamagai, T. Superconductivity at Tc ∼ 14 K in single-crystalline FeTe0.61Se0.39. Phys. Rev. B 2009, 80, 092502. [Google Scholar] [CrossRef] [Green Version]
- Güler, N.K.; Ekicibil, A.; Özçelik, B.; Onar, K.; Yakıncı, M.E.; Okazaki, H.; Takeya, H.; Takano, Y. The annealing effects in the iron-based superconductor FeTe0.8Se0.2 prepared by the self-flux method. J. Supercond. Nov. Magn. 2014, 27, 2691–2697. [Google Scholar] [CrossRef]
- Pietosa, J.; Puzniak, R.; Paliwoda, D.; Paszkowicz, W.; Katrusiak, A.; Kamiński, R.; Gawryluk, D.J.; Wisniewski, A. Enhancement of superconducting state properties of Fe0.994Ni0.007Te0.66Se0.34 single crystal with increasing pressure: A correlation with pressure-induced crystallinity degradation. Supercond. Sci. Technol. 2020, 33, 045004. [Google Scholar] [CrossRef]
- Lynnyk, A.; Aleshkevych, P.; Wiśniewski, A.; Puźniak, R. Superconducting phase generated by the extensive hydrogenation of FeTe0.65Se0.35. in preparation.
- Bean, C.P.; Livingston, J.D. Surface barrier in type-II superconductors. Phys. Rev. Lett. 1964, 12, 141. [Google Scholar] [CrossRef]
- Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Kovacheva, D.; Leo, A.; Grimaldi, G.; Pace, S.; Polichetti, M. Mixed state properties of iron based Fe(Se,Te) superconductor fabricated by Bridgman and by self-flux methods. J. Appl. Phys. 2018, 123, 233904. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of hard superconductors. Phys. Rev. Lett. 1962, 8, 250. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of high-field superconductors. Rev. Mod. Phys. 1964, 36, 31. [Google Scholar] [CrossRef]
- Wiesinger, H.P.; Sauerzopf, F.M.; Weber, H.W. On the calculation of Jc from magnetization measurements on superconductors. Phys. C Supercond. 1992, 203, 121–128. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarenko, S.I.; Prokhvatilov, A.I.; Puźniak, R.; Piętosa, J.; Prokhorov, A.A.; Meleshko, V.V.; Timofeev, V.P.; Koverya, V.P.; Gawryluk, D.J.; Wiśniewski, A. The Impact of Hydrogenation on Structural and Superconducting Properties of FeTe0.65Se0.35 Single Crystals. Materials 2021, 14, 7900. https://doi.org/10.3390/ma14247900
Bondarenko SI, Prokhvatilov AI, Puźniak R, Piętosa J, Prokhorov AA, Meleshko VV, Timofeev VP, Koverya VP, Gawryluk DJ, Wiśniewski A. The Impact of Hydrogenation on Structural and Superconducting Properties of FeTe0.65Se0.35 Single Crystals. Materials. 2021; 14(24):7900. https://doi.org/10.3390/ma14247900
Chicago/Turabian StyleBondarenko, Stanislav I., Anatolij I. Prokhvatilov, Roman Puźniak, Jarosław Piętosa, Andrey A. Prokhorov, Vladimir V. Meleshko, Valeriy P. Timofeev, Valentin P. Koverya, Dariusz Jakub Gawryluk, and Andrzej Wiśniewski. 2021. "The Impact of Hydrogenation on Structural and Superconducting Properties of FeTe0.65Se0.35 Single Crystals" Materials 14, no. 24: 7900. https://doi.org/10.3390/ma14247900
APA StyleBondarenko, S. I., Prokhvatilov, A. I., Puźniak, R., Piętosa, J., Prokhorov, A. A., Meleshko, V. V., Timofeev, V. P., Koverya, V. P., Gawryluk, D. J., & Wiśniewski, A. (2021). The Impact of Hydrogenation on Structural and Superconducting Properties of FeTe0.65Se0.35 Single Crystals. Materials, 14(24), 7900. https://doi.org/10.3390/ma14247900