Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Composites
2.2. Aging and Thermal Shock Experiment
2.3. Characterization and Mechanical Tests
3. Results and Discussion
3.1. Morphology of the Nanofillers
3.2. Tensile Properties
3.3. Tensile Fracture of the CFRPs
3.4. Flexural Properties
3.5. Flexural Fracture of the CFRPs
3.6. DSC Analysis
3.7. FTIR Analysis
4. Conclusions
- (1)
- During immersion aging, the tensile and flexural properties of the CFRPs decreased. The aging behavior depends on the aging temperature and aging medium. High-temperature accelerated the mechanical property degradation of the CFRPs, resulting in low strength and modulus. The acid solution and the alkali solution more strongly damaged CFRPs compared with water aqueous at the same temperature.
- (2)
- The addition of MWCNT improved the aging resistance of the CFRPs under soaking conditions due to a good interfacial interaction and high barrier property of MWCNT. The nanoclay brings an improvement effect on the aging resistance to CFRPs under soaking aging conditions, attributed to a high aspect ratio and moderate interface adhesion. As a result, the CFRPs containing nanofillers reduce less in tensile and flexural properties than neat CFRPs.
- (3)
- The MWCNT and nanoclay hardly improve the aging resistance during thermal shock cycling. The SEM observation confirms several tiny cracks in the interface and resin under the action of stress due to different thermal expansion coefficients of the composite components during thermal shock cycling, which is one of the dominant failure mechanisms of the CFRPs containing nanofillers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, S.T. Handbook of Composites; Springer: Berlin/Heidelberg, Germany, 1998; pp. 120–132. [Google Scholar]
- Chalmers, D.W. The potential for the use of composite materials in marine structures. Mar. Struct. 1994, 7, 441–456. [Google Scholar] [CrossRef]
- Lubineau, G.; Rahaman, A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements. Carbon 2012, 50, 2377–2395. [Google Scholar] [CrossRef]
- Tual, N.; Carrere, N.; Davies, P.; Bonnemains, T.; Lolive, E. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Compos. Part A 2015, 78, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Chowdhury, M.M.R.; Imran, K.A.; Salam, M.B.; Hosur, M.; Jeelani, S. Effect of low velocity impact responses on durability of conventional and nanophased CFRP composites exposed to seawater. Polym. Degrad. Stabil. 2014, 99, 180–189. [Google Scholar] [CrossRef]
- Azimpour-Shishevan, F.; Akbulut, H.; Mohtadi-Bonab, M.A. The effect of thermal shock cycling on low velocity impact behavior of carbon fiber reinforced epoxy composites. J. Dyn. Behav. Mater. 2019, 5, 161–169. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, S.; Mehta, R. Carbon nanotube-reinforced glass fiber epoxy composite laminates exposed to hygrothermal conditioning. J. Mater. Sci. 2016, 51, 8562–8578. [Google Scholar] [CrossRef]
- Sánchez, M.; Campo, M.; Jiménez-Suárez, A.; Ureña, A. Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos. Part B 2013, 45, 1613–1619. [Google Scholar] [CrossRef]
- Pathak, A.K.; Borah, M.; Gupta, A.; Yokozeki, T.; Dhakate, S.R. Improved mechanical properties of carbon fiber/graphene oxide epoxy hybrid composites. Compos. Sci. Technol. 2016, 135, 28–38. [Google Scholar] [CrossRef]
- Ambekar, S.D.; Tripathi, V.K. Optimization of flexural strength of CFRP hybrid nano composites containing nano ZnO and nanoclay particles. Int. J. Int. Des. Manuf. 2019, 13, 689–698. [Google Scholar] [CrossRef]
- Karnati, S.R.; Agbo, P.; Zhang, L. Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite. Compos. Commun. 2020, 17, 32–41. [Google Scholar] [CrossRef]
- Prusty, R.K.; Rathore, D.K.; Ray, B.C. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. J. Appl. Polym. Sci. 2018, 135, 45987. [Google Scholar] [CrossRef]
- Bakis, G.; Wendel, J.F.; Zeiler, R.; Aksit, A.; Häublein, M.; Demleitner, M.; Benra, J.; Forero, S.; Schütz, W.; Altstädt, V. Mechanical properties of the carbon nanotube modified epoxy-carbon fiber unidirectional prepreg laminates. Polymers 2021, 13, 770. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.B.; Kim, M.G.; Kim, C.G.; Bhowmik, S. Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply. Compos. Part A 2011, 42, 694–701. [Google Scholar] [CrossRef]
- Firdosh, S.; Murthy, H.N.N.; Pal, R.; Angadi, G.; Raghavendra, N.; Krishna, M. Durability of GFRP nanocomposites subjected to hygrothermal ageing. Compos. Part B 2015, 69, 443–451. [Google Scholar] [CrossRef]
- Jeyakumar, R.; Sampath, P.S.; Ramamoorthi, R.; Ramakrishnan, T. Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int. J. Adv. Manuf. Technol. 2017, 93, 527–535. [Google Scholar] [CrossRef]
- Shettar, M.; Kini, U.A.; Sharma, S.; Hiremath, P.; Gowrishankar, M.C. Hygrothermal chamber aging effect on mechanical behavior and morphology of glass fiber-epoxy-nanoclay composites. Mater. Res. Exp. 2020, 7, 015318. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, J.A.; Rubio-Gonzalez, C.; Ku-Herrera, J.D.; Ramos-Galicia, L.; Velasco-Santos, C. Effect of seawater ageing on interlaminar fracture toughness of carbon fiber/epoxy composites containing carbon nanofillers. J. Reinf. Plast. Compos. 2018, 1, 1346–1359. [Google Scholar] [CrossRef]
- Kattaguri, R.; Fulmali, A.O.; Prusty, R.K.; Ray, B.C. Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. J. Appl. Polym. Sci. 2020, 12, 48434. [Google Scholar] [CrossRef]
- Ibrahim, M.H.I.; Hassan, M.Z.; Ibrahim, I.; Rashidi, A.H.M.; Nor, S.F.M.; Daud, M.Y.M. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites. AIP Conf. Proc. 2018, 1958, 020006. [Google Scholar]
- Hong, B.; Xian, G. Ageing of a thermosetting polyurethane and its pultruded carbon fiber plates subjected to seawater immersion. Constr. Build. Mater. 2018, 165, 514–522. [Google Scholar] [CrossRef]
- Lu, Z.; Xian, G.; Li, H. Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates. Compos. Part B 2015, 77, 421–430. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N. Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment. Mater. Lett. 2020, 261, 127091. [Google Scholar] [CrossRef]
- Sunil, K.S.; Londe, N.V.; Saviraj, A.S.; Kannanth, V. Effect of accelerated ageing on hardness and flexural behaviour of woven fabric glass/carbon hybrid epoxy composites. Mater. Today Proc. 2017, 4, 10751–10756. [Google Scholar]
- Slawski, S.; Szymiczek, M.; Domin, J. Influence of the reinforcement on the destruction image of the composites panels after applying impact load. J. Appl. Polym. Sci. 2012, 2077, 020050. [Google Scholar]
- Ma, Y.; Ueda, M.; Yokozeki, T.; Sugahara, T.; Yang, Y.; Hamada, H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Compos. Struct. 2017, 160, 89–99. [Google Scholar] [CrossRef]
- Baptista, R.; Mendao, A.; Guedes, M.; Marat-Mendes, R. An experimental study on mechanical properties of epoxy-matrix composites containing graphite filler. Proc. Struct. Integr. 2016, 1, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Materials ASoT. ASTM D3039/D3039M; Standard test method for tensile properties of polymer matrix composite materials; ASTM International: West Conshohocken, PA, USA, 2000.
- Materials ASoT. ASTM D7264/D7264M; Standard test method for flexural properties of polymer matrix composite materials; ASTM International: West Conshohocken, PA, USA, 2015.
- Onera, G.; Unalb, H.Y.; Pekbey, Y. Mechanical performance of hybrid carbon /fiberglass composite laminates reinforced with nanoclay. Acta Phys. Pol. A 2018, 134, 164–167. [Google Scholar] [CrossRef]
- Zulueta, K.; Burgoa, A.; Martinez, I. Effects of hygrothermal aging on the thermomechanical properties of a carbon fiber reinforced epoxy sheet molding compound: An experimental research. J. Appl. Polym. Sci. 2021, 138, e50009. [Google Scholar] [CrossRef]
- Zhang, J.; Ju, S.; Jiang, D.; Peng, H.X. Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes. Compos. Part B 2013, 54, 371–376. [Google Scholar] [CrossRef]
- Xu, Y.; Van Hoa, S. Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 2008, 68, 854–861. [Google Scholar] [CrossRef]
- Dindar, B.; Bektaş, N.B. Experimental investigation of fatigue and mechanical properties of unidirectional composite plates filled nanoparticles. Acta Phys. Pol. A 2018, 134, 5–9. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Gude, M.R.; Ureña, A. Water uptake of epoxy composites reinforced with carbon nanofillers. Compos. Part A 2012, 43, 2169–2175. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.D.; Cui, G.Y. Enhanced mechanical properties of multiscale carbon fiber/epoxy unidirectional composites with different dimensional carbon nanofillers. Nanomaterials 2020, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Iqbal, K.; Munir, A.; Kim, J.K. Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Compos. Part A 2011, 42, 253–264. [Google Scholar] [CrossRef]
- Chan, M.L.; Lau, K.K.; Wong, T.T.; Cardona, F. Interfacial bonding characteristic of nanoclay/polymer composites. Appl. Surf. Sci. 2011, 258, 860. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K.; Cheng, H.; Wu, T. Water uptake and mechanical evolution behavior of carbon fiber reinforced plastic under saline and acidic environments. Mater. Res. Express 2019, 6, 105349. [Google Scholar] [CrossRef]
- Dehghan, M.; Al-Mahaidi, R.; Sbarski, I. Investigation of CNT modification of epoxy resin in CFRP strengthening systems. Polym. Compos. 2016, 12, 23262. [Google Scholar] [CrossRef]
- Hossain, M.K.; Imran, K.A.; Hosur, M.V.; Jeelani, S. Degradation of mechanical properties of conventional and nanophased carbon/epoxy composites in seawater. J. Eng. Mater. Technol. 2011, 133, 041004. [Google Scholar] [CrossRef]
- Wolff, E.G. Polymer Matrix Composites: Moisture Effects and Dimensional Stability. International En-Cyclopedia of Composites; VCH Publishers: New York, NY, USA, 1991. [Google Scholar]
- Selzer, R.; Friedrich, K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos. Part A 1997, 6, 595–604. [Google Scholar] [CrossRef]
- Azimpour-Shishevan, F.; Akbulut, H.; Mohtadi-Bonab, M. Thermal shock behavior of twill woven carbon fiber reinforced polymer composites. J. Compos. Sci. 2021, 5, 33. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.L. Rapid evaluation of thermal aging of a carbon fiber laminated epoxy composite. Polym. Compos. 2014, 35, 975–984. [Google Scholar] [CrossRef]
- Cholake, S.T.; Mada, M.R.; Raman, R.K.S.; Bai, Y.; Zhao, X.L.; Rizkalla, S.; Bandyopadhyay, S. Quantitative analysis of curing mechanisms of epoxy resin by mid-and near-fourier transform infra red spectroscopy. Def. Sci. J. 2014, 64, 314. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Chen, X.; Zhang, H.; Wang, Z. Effects of hygrothermal aging on epoxybased anisotropic conductive film. Mater. Lett. 2006, 60, 2958–2963. [Google Scholar] [CrossRef]
- Aslan, A.; Salur, E.; Duzcukoglu, H.; Sahin, O.S.; Ekrem, M. The effects of harsh aging environments on the properties of neat and MWCNT reinforced epoxy resins. Constr. Build. Mater. 2021, 272, 121929. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z.; Zhu, W.; Wan, B.; Han, B. Hygrothermal aging behavior and aging mechanism of carbon nanofibers/epoxy composites. Constr. Build. Mater. 2021, 294, 123538. [Google Scholar] [CrossRef]
- Starkova, O.; Gaidukovs, S.; Platnieks, O.; Barkane, A.; Garkusina, K.; Palitis, E.; Grase, L. Water absorption and hydrothermal ageing of epoxy adhesives reinforced with amino-functionalized graphene oxide nanoparticles. Polym. Degrad. Stab. 2021, 91, 109670. [Google Scholar] [CrossRef]
Sample | Mechanical Properties | Water Soaking at 20 °C | Water Soaking at 60 °C | HCl Soaking | NaOH Soaking | Thermal Shock Cycling |
---|---|---|---|---|---|---|
CFRPs (without nanofiller) | Tensile strength | 2.15 | 12.51 | 3.27 | 2.79 | 1.04 |
Tensile modulus | 1.65 | 5.79 | 2.48 | 1.65 | 0.83 | |
CFRPs with MWCNT | Tensile strength | 1.33 | 10.78 | 2.36 | 1.99 | 1.40 |
Tensile modulus | 0.79 | 4.76 | 2.38 | 1.59 | 1.59 | |
CFRPs with nanoclay | Tensile strength | 1.73 | 10.99 | 2.41 | 2.11 | 1.58 |
Tensile modulus | 0.81 | 5.65 | 2.42 | 0.81 | 1.61 |
Sample | Mechanical Properties | Water Soaking at 20 °C | Water Soaking at 60 °C | HCl Soaking | NaOH Soaking | Thermal Shock Cycling |
---|---|---|---|---|---|---|
CFRPs (without nanofiller) | Flexural strength | 8.38 | 18.03 | 10.66 | 9.11 | 2.00 |
Flexural modulus | 4.76 | 7.62 | 6.67 | 5.71 | 0.95 | |
CFRPs with MWCNT | Flexural strength | 5.98 | 13.70 | 7.29 | 6.07 | 2.69 |
Flexural modulus | 2.78 | 7.41 | 4.63 | 2.78 | 1.85 | |
CFRPs with nanoclay | Flexural strength | 6.22 | 15.60 | 8.59 | 7.71 | 2.98 |
Flexural modulus | 3.74 | 7.48 | 5.61 | 4.67 | 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Lu, S.; Song, D.; Zhu, X.; Almira, I.; Liu, J.; Zhu, Y. Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions. Materials 2021, 14, 7810. https://doi.org/10.3390/ma14247810
Yang T, Lu S, Song D, Zhu X, Almira I, Liu J, Zhu Y. Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions. Materials. 2021; 14(24):7810. https://doi.org/10.3390/ma14247810
Chicago/Turabian StyleYang, Tian, Shijian Lu, Da Song, Xianyong Zhu, Israpil Almira, Jiaan Liu, and Ying Zhu. 2021. "Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions" Materials 14, no. 24: 7810. https://doi.org/10.3390/ma14247810
APA StyleYang, T., Lu, S., Song, D., Zhu, X., Almira, I., Liu, J., & Zhu, Y. (2021). Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions. Materials, 14(24), 7810. https://doi.org/10.3390/ma14247810