Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Sample | Ecorr (V) | icorr (µA cm−2) | Ep (V) | ip (µA cm−2) | Rp (kΩ cm2) |
---|---|---|---|---|---|
CP Ti | −0.244 ± 0.012 | 0.23 ± 0.02 | 0.151 ± 0.02 | 2.86 ± 0.014 | 121.10 ± 8.36 |
Ti-6Al-4V | −0.569 ± 0.025 | 0.36 ± 0.03 | −0.148 ± 0.034 | 4.12 ± 0.022 | 101.22 ± 7.94 |
Element | Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 |
---|---|---|---|---|
O | 8.59 | 14.11 | 14.13 | 5.72 |
Na | 0.09 | 0.14 | - | - |
P | 0.08 | 0.09 | - | - |
Ca | - | 0.22 | 0.19 | - |
Ti | 91.24 | 85.44 | 85.68 | 94.28 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Element | Spectrum 1 | Spectrum 2 | Spectrum 3 |
---|---|---|---|
O | 28.89 | 3.78 | 2.79 |
Na | 0.26 | - | - |
Al | 11.52 | 5.68 | 6.66 |
P | 0.18 | 0.05 | 0.01 |
Cl | 0.07 | 0.02 | - |
Ca | 0.12 | - | - |
Ti | 57.01 | 83.97 | 86.80 |
V | 1.95 | 6.50 | 3.75 |
Total | 100.00 | 100.00 | 100.00 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leyens:, C.; Peters, M. Titanium and Titanium Alloys Fundamentals and Applications. WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Muñoz, J.J.; Tiburcio, C.G.; Martinez, A.L.; Robledo, P.Z.; Bandala, E.M.; Gamez, O.S.; Mendoza, D.N.; Coca, J.O.; Lopez, F.E.; Calderon, F.A. Susceptibility to pitting corrosion of Ti-CP2, Ti-6Al-2Sn-4Zr-2Mo, and Ti-6Al-4V alloys for aeronautical applications. Metals 2021, 11, 1002. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Progress in Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New titanium alloys, promising materials for medical devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef]
- Bocchetta, P.; Chen, L.Y.; Tardelli, J.D.C.; Cândido dos Reis, A.; Almeraya-Calderón, F.; Leo, P. Passive layers and corrosion resistance of biomedical Ti-6-Al-4V and β-Ti Alloys. Coatings 2021, 11, 487. [Google Scholar] [CrossRef]
- Popa, M.V.; Vasilescu, E.; Drob, P.; Vasilescu, C.; Demetrescu, I.; Ionescu, D. The stability of the passive films on titanium based biomaterials, in physiological serum and in Ringer’s solutions. Rev. Chim. 2003, 54, 503–507. [Google Scholar]
- Shahba, R.M.A.; Ghannem, W.A.; El-Shenawy, A.E.S.; Ahmed, A.S.I.; Tantawy, S.M. Corrosion and inhibition of Ti-6Al-4V in NaCl solution. Int. J. Electrochem. Sci. 2011, 6, 5499–5509. [Google Scholar]
- Kožuh, S.; Vrsalović, L.; Gojić, M.; Gudić, S.; Kosec, B. Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution. J. Min. Metal. Sect. B Metall. 2016, 52, 53–61. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, L.; Chen, Y.; Li, L.; He, Y.; Ding, Z. Corrosion behavior of titanium in artificial saliva by lactic acid. Materials 2014, 7, 5528–5542. [Google Scholar] [CrossRef] [Green Version]
- Mlinarić, M.R.; Kanižaj, L.; Žuljević, D.; Katić, V.; Spalj, S.; Ćurković, H.O. Effect of oral antiseptics on the corrosion stability of nickel-titanium orthodontic alloys. Mater. Corros. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Mirea, R.; Cucuruz, A.T.; Ceatra, L.C.; Badea, T.; Biris, I.; Popescu, E.; Paraschiv, A.; Ene, R.; Sbarcea, G.; Cretu, M. In-depth comparative assessment of different metallic biomaterials in simulated body fluid. Materials 2021, 14, 2774. [Google Scholar] [CrossRef] [PubMed]
- Berbel, L.O.; Banczek, E.P.; Karousis, I.K.; Kotsakis, G.A.; Costa, I. Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an In Vitro model of peri-implant inflammation. PLoS ONE 2019, 14, e0210530. [Google Scholar] [CrossRef] [Green Version]
- Shivaram, M.J.; Arya, S.B.; Nayak, J.; Panigrahi, B.B. Electrochemical corrosion and impedance studies of porous Ti–xNb–Ag alloy in physiological solution. Trans. Indian. Inst. Met. 2020, 73, 921–928. [Google Scholar] [CrossRef]
- Strietzel, R.; Hosch, A.; Kalbfleisch, H.; Buch, D. In vitro corrosion of titanium. Biomaterials 1998, 19, 1495–1499. [Google Scholar] [CrossRef]
- Mareci, D.; Ungureanu, G.; Aelenei, D.; Mirza Rosca, J.C. Electrochemical characteristics of titanium based biomaterials in artificial saliva. Mater. Corros. 2007, 11, 848–856. [Google Scholar] [CrossRef]
- Cvijović-Alagić, I.; Cvijović, Z.; Bajat, J.; Rakin, M. Composition and processing effects on the electrochemical characteristics of biomedical titanium alloys. Corrs. Sci. 2014, 83, 245–254. [Google Scholar] [CrossRef]
- Luiz de Assis, S.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta 2006, 51, 1815–1819. [Google Scholar] [CrossRef]
- Milošev, I.; Metikoš-Huković, M.; Strehblow, H.H. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 2000, 21, 2103–2113. [Google Scholar] [CrossRef]
- Alves, V.A.; Reis, R.Q.; Santos, I.C.B.; Souza, D.G.; Gonçalves, T.D.F.; Pereira-Da-Silva, M.A.; Rossi, A.; Silva, L.A.D. In Situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C. Corros. Sci. 2009, 51, 2473–2482. [Google Scholar] [CrossRef]
- Marino, C.E.; Biaggio, S.R.; Rocha-Filho, R.C.; Bocchi, N. Voltammetric stability of anodic films on the Ti6Al4V alloy in chloride medium. Electrochim. Acta 2006, 51, 6580–6583. [Google Scholar] [CrossRef]
- Costa, B.C.; Tokuhara, C.K.; Rocha, L.A.; Oliveira, R.C.; Lisboa-Filho, P.N.; Pessoa, J.C. Vanadium ionic species from degradation of Ti-6Al4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater. Sci. Eng. C. 2019, 96, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Noumbissi, S.; Scarano, A.; Gupta, S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials 2019, 12, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugelmin, G.S.; Santos, L.S.; Ponte, H.A.; Marino, C.E.B. Electrochemical stability and bioactivity evaluation of Ti6Al4V surface coated with thin oxide by EIS for biomedical applications. Mater. Res. 2015, 18, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.T.C.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater. 2009, 5, 399–405. [Google Scholar] [CrossRef]
- Marino, C.E.B.; Mascaro, L.H. EIS characterization of a Ti-dental implant in artificial saliva media: Dissolution process of the oxide barrier. J. Electroanal. Chem. 2004, 598, 115–120. [Google Scholar] [CrossRef]
- Fekry, A.M.; Ameer, M.A. Electrochemistry and impedance study on titanium and magnesium alloys in Ringer′s solution. Int. J. Electrochem. Sci. 2011, 6, 1342–1354. [Google Scholar]
- Bhola, R.; Bhola, S.M.; Mishra, B.; Olson, D.L. Electrochemical evaluation of wrought titanium-15 molybdenum alloy for dental implant applications in phosphate buffer saline. Port. Electrochim. Acta 2010, 28, 135–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Addison, O.; Yu, F.; Troconis, B.C.R.; Scully, J.R.; Davenport, A.J. Time dependent enhanced corrosion of Ti6Al4V in the presence of H2O2 and albumin. Sci. Rep. 2018, 8, 3185. [Google Scholar] [CrossRef] [Green Version]
- Dimah, M.K.; Devesa Albeza, F.; Amigo Borras, V.; Igual Munoz, A. Study of the biotribocorrosion behaviour of titanium biomedical alloys in simulated body fluids by electrochemical techniques. Wear 2012, 294–295, 409–418. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.; Yu, S.; Du, Z.; Dong, F.; Zhang, J.; Zhang, X. Corrosion Behavior of As-Cast Ti–10Mo–6Zr–4Sn–3Nb and Ti–6Al–4V in Hank’s Solution: A Comparison Investigation. Metals 2021, 11, 11. [Google Scholar] [CrossRef]
- Williams, D.E.; Wright, G.A. Nucleation and growth of anodic oxide films on bismuth-I. Cyclic voltammetry. Electrochim. Acta 1976, 21, 1009–1019. [Google Scholar] [CrossRef]
- Atapour, M.; Pilchak, A.L.; Frankel, G.S.; Wiliams, J.C. Corrosion behaviour of β titanium alloys for biomedical applications. Mater. Sci. Eng. C 2011, 31, 885–891. [Google Scholar] [CrossRef]
- Raistrick, I.D.; Macdonald, J.R.; Franceschetti, D.R. Impedance Spectroscopy; Macdonald, J.R.J., Ed.; Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Rammelt, U.; Reinhard, G. On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes. Electrochim. Acta 1990, 35, 1045–1049. [Google Scholar] [CrossRef]
- Stoynov, Z. Impedance modelling and data processing: Structural and parametrical estimation. Electrochim. Acta 1990, 35, 1493–1499. [Google Scholar] [CrossRef]
- Pan, J.; Thierry, D.; Leygraf, C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 1996, 41, 1143–1153. [Google Scholar] [CrossRef]
- Thomashov, N.D.; Chernova, G.P.; Ruscol, Y.S.; Ayuyan, G.A. The passivation of alloys on titanium basis. Electrochim. Acta 1974, 19, 159–172. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, L.C.; Zhang, J.; Zhang, X.; Ni, Q.; Chen, Y.; Wu, M.; Yang, C. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros. Sci. 2016, 111, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Bobowska, I.; Tracz, M.; Opasinska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P. Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J. Nanomater. 2014, 124814. [Google Scholar] [CrossRef]
- Shultz, R.W.; Thomas, D.E. Metals Handbook, Corrosion, 9th ed.; Korb, L.J., Ed.; ASM International: Materials Park, OH, USA, 1987; Volume 13, pp. 1688–1820. [Google Scholar]
- Jäger, M.; Jennissen, H.P.; Dittrich, F.; Fischer, A.; Köhling, H.L. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials 2017, 10, 1302. [Google Scholar] [CrossRef] [Green Version]
- Benea, L.; Danaila, E.; Ponthiaux, P. Effect of titania anodic formation and hydroxyapatite electrodeposition on electrochemical behaviour of Ti−6Al−4V alloy under fretting conditions for biomedical applications. Corros. Sci. 2015, 91, 262–271. [Google Scholar] [CrossRef]
- Pantović, M.R.; Stanojević, B.P.; Pavlović, M.M.; Mihailović, M.D.; Stevanović, J.S.; Panić, V.V.; Ignjatović, N.L. Anodizing/anaphoretic electrodeposition of nano-calcium phosphate/chitosan lactate multifunctional coatings on titanium with advanced corrosion resistance, bioactivity and antibacterial properties. ACS Biomater. Sci. Eng. 2021, 7, 3088–3102. [Google Scholar] [CrossRef]
- Gilabert-Chirivella, E.; Pérez-Feito, R.; Ribeiro, C.; Ribeiro, S.; Correia, D.M.; González-Martín, M.L.; Manero, J.M.; Lanceros-Méndez, S.; Ferrer, G.G.; Gómez-Ribelles, J.L. Chitosan patterning on titanium implants. Prog. Org. Coat. 2017, 111, 23–28. [Google Scholar] [CrossRef]
- Ferraris, S.; Spriano, S. Antibacterial titanium surfaces for medical implants. Mater. Sci. Eng. C 2016, 61, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Simchi, A.; Tamjid, E.; Pishbin, F.; Boccaccini, A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 2011, 7, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, H.; Wang, X.; Qin, G.; Zhang, E. Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification. Appl. Surf. Sci. 2019, 463, 261–274. [Google Scholar] [CrossRef]
Salt | Concentration (mmol L−1) | Concentration (g L−1) |
---|---|---|
NaCl | 137 | 8.0 |
KCl | 2.7 | 0.2 |
Na2HPO4 | 10 | 1.42 |
KH2PO4 | 1.8 | 0.24 |
CP Ti | Ti-6Al-4V | |
---|---|---|
Element | Spectrum 1 | Spectrum 1 |
O | 7.12 | 4.21 |
Ti | 92.88 | 86.51 |
Al | - | 5.12 |
V | - | 3.85 |
Fe | - | 0.31 |
Total | 100.00 | 100.00 |
Element | Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 3 |
---|---|---|---|---|
O | 3.59 | 4.04 | 3.77 | 3.68 |
Al | 5.29 | 5.60 | 5.22 | 5.23 |
Ti | 87.88 | 87.34 | 86.96 | 87.62 |
V | 3.25 | 3.01 | 4.04 | 3.48 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
t (h) | Qp × 106 (Ω−1 sn cm−2) | np | Rp (Ω cm2) | Qb × 106 (Ω−1 sn cm−2) | nb | Rb (kΩ cm2) |
---|---|---|---|---|---|---|
CP Ti | ||||||
0 | 116.91 ± 2.59 | 0.92 ± 0.02 | 34.01 ± 2.83 | 55.77 ± 3.06 | 0.84 ± 0.02 | 4.64 ± 0.23 |
1 | 100.11 ± 3.20 | 0.96 ± 0.01 | 46.31 ± 2.54 | 47.05 ± 2.74 | 0.86 ± 0.01 | 119.63 ± 12.35 |
24 | 70.45 ± 3.57 | 0.97 ± 0.01 | 66.34 ± 3.14 | 32.99 ± 2.22 | 0.86 ± 0.01 | 316.83 ± 22.87 |
48 | 60.41 ± 3.80 | 0.96 ± 0.02 | 83.72 ± 3.39 | 29.33 ± 1.09 | 0.86 ± 0.01 | 423.20 ± 22.85 |
72 | 59.76 ± 2.31 | 0.96± 0.01 | 88.45 ± 3.87 | 26.42 ± 1.05 | 0.85 ± 0.02 | 519.77 ± 14.55 |
96 | 59.54 ± 2.57 | 0.96 ± 0.01 | 94.63 ± 3.53 | 25.37 ± 1.42 | 0.87 ± 0.01 | 652.71 ± 25.28 |
120 | 58.99 ± 2.33 | 0.97 ± 0.01 | 100.57 ± 4.01 | 23.95 ± 0.87 | 0.87 ± 0.01 | 691.76 ± 25.37 |
144 | 55.28 ± 3.39 | 0.97 ± 0.01 | 102.50 ± 3.79 | 23.44 ± 1.21 | 0.87 ± 0.01 | 683.55 ± 32.14 |
168 | 54.96 ± 2.45 | 0.98 ± 0.01 | 104.06 ± 3.77 | 23.09 ± 0.85 | 0.88 ± 0.03 | 688.15 ± 35.23 |
192 | 52.92 ± 3.42 | 0.97 ± 0.02 | 103.11 ± 3.83 | 22.58 ± 0.62 | 0.87 ± 0.02 | 728.04 ± 19.38 |
216 | 51.09 ± 2.39 | 0.98 ± 0.01 | 104.40 ± 3.90 | 21.76 ± 0.81 | 0.88 ± 0.01 | 738.44 ± 20.68 |
240 | 50.07 ± 2.44 | 0.97 ± 0.01 | 104.83 ± 3.95 | 20.47 ± 1.76 | 0.89 ± 0.01 | 750.19 ± 21.01 |
264 | 50.77 ± 2.41 | 0.98 ± 0.01 | 107.90 ± 3.13 | 20.48 ± 0.77 | 0.89 ± 0.01 | 766.04 ± 24.45 |
288 | 51.00 ± 2.42 | 0.98 ± 0.01 | 108.12 ± 3.97 | 19.74 ± 1.13 | 0.90 ± 0.01 | 778.99 ± 22.81 |
312 | 50.03 ± 2.43 | 0.98 ± 0.01 | 110.94 ± 2.13 | 19.65 ± 1.20 | 0.91 ± 0.01 | 796.16 ± 14.29 |
336 | 49.84 ± 2.19 | 0.98 ± 0.01 | 112.68 ± 1.92 | 19.63 ± 1.14 | 0.91 ± 0.02 | 810.66 ± 12.69 |
Ti-6Al-4V | ||||||
0 | 124.20 ± 3.10 | 0.90 ± 0.01 | 30.52 ± 2.59 | 68.58 ± 3.12 | 0.82 ± 0.03 | 4.24 ± 0.57 |
1 | 98.54 ± 3.49 | 0.95 ± 0.02 | 40.76 ± 2.74 | 61.63 ± 2.77 | 0.84 ± 0.02 | 74.70 ± 11.07 |
24 | 81.51 ± 5.21 | 0.96 ± 0.01 | 50.14 ± 2.94 | 50.38 ± 2.83 | 0.85 ± 0.01 | 254.81 ± 12.42 |
48 | 77.81 ± 4.21 | 0.95 ± 0.01 | 54.40 ± 2.58 | 41.04 ± 2.08 | 0.84 ± 0.01 | 388.13 ± 15.33 |
72 | 70.31 ± 4.87 | 0.96 ± 0.01 | 55.81 ± 2.50 | 37.97 ± 1.07 | 0.85 ± 0.01 | 405.24 ± 17.34 |
96 | 66.50 ± 3.55 | 0.96 ± 0.01 | 57.52 ± 1.52 | 35.51 ± 2.34 | 0.84 ± 0.01 | 429.52 ± 12.13 |
120 | 65.41 ± 3.76 | 0.96 ± 0.01 | 56.84 ± 2.61 | 31.77 ± 2.77 | 0.85 ± 0.01 | 445.42 ± 12.83 |
144 | 62.44 ± 3.67 | 0.97 ± 0.01 | 56.60 ± 2.59 | 30.60 ± 1.72 | 0.86 ± 0.01 | 451.38 ± 12.57 |
168 | 60.58 ± 3.88 | 0.97 ± 0.01 | 57.55 ± 2.80 | 30.04 ± 1.75 | 0.85 ± 0.02 | 464.35 ± 11.84 |
192 | 59.16 ± 3.71 | 0.96 ± 0.01 | 60.93 ± 3.32 | 29.30 ± 0.99 | 0.86 ± 0.01 | 476.00 ± 12.39 |
216 | 56.79 ± 3.42 | 0.96 ± 0.02 | 66.62 ± 2.60 | 28.59 ± 0.95 | 0.86 ± 0.01 | 482.02 ± 13.48 |
240 | 56.79 ± 3.89 | 0.97 ± 0.01 | 72.51 ± 1.58 | 27.96 ± 1.22 | 0.86 ± 0.02 | 486.35 ± 13.22 |
264 | 55.68 ± 3.57 | 0.98 ± 0.01 | 71.40 ± 4.22 | 26.36 ± 1.06 | 0.87 ± 0.01 | 494.58 ± 12.86 |
288 | 54.42 ± 3.66 | 0.97 ± 0.01 | 76.23 ± 3.58 | 25.66 ± 1.24 | 0.88 ± 0.01 | 500.24 ± 12.45 |
312 | 53.72± 4.19 | 0.98 ± 0.01 | 79.47 ± 2.95 | 24.82 ± 1.39 | 0.88 ± 0.01 | 507.23 ± 12.99 |
336 | 52.63 ± 3.41 | 0.97 ± 0.01 | 86.58 ± 1.80 | 23.97 ± 1.36 | 0.87 ± 0.02 | 518.72 ± 13.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudić, S.; Vrsalović, L.; Kvrgić, D.; Nagode, A. Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution. Materials 2021, 14, 7495. https://doi.org/10.3390/ma14247495
Gudić S, Vrsalović L, Kvrgić D, Nagode A. Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution. Materials. 2021; 14(24):7495. https://doi.org/10.3390/ma14247495
Chicago/Turabian StyleGudić, Senka, Ladislav Vrsalović, Dario Kvrgić, and Aleš Nagode. 2021. "Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution" Materials 14, no. 24: 7495. https://doi.org/10.3390/ma14247495
APA StyleGudić, S., Vrsalović, L., Kvrgić, D., & Nagode, A. (2021). Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution. Materials, 14(24), 7495. https://doi.org/10.3390/ma14247495