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Abstract: The electrochemical behavior of commercially pure titanium (CP Ti) and Ti-6Al-4V (Grade 5)
alloy in phosphate buffered saline solution (PBS, pH = 7.4) at 37 ◦C (i.e., in simulated physiological
solution in the human body) was examined using open circuit potential measurements, linear and
potentiodynamic polarization and electrochemical impedance spectroscopy methods. After the
impedance measurements and after potentiodynamic polarization measurements, the surface of
the samples was investigated by scanning electron microscopy, while the elemental composition of
oxide film on the surface of each sample was determined by EDS analysis. The electrochemical and
corrosion behavior of CP Ti and Ti-6Al-4V alloys is due to forming a two-layer model of surface
oxide film, consisting of a thin barrier-type inner layer and a porous outer layer. The inner barrier
layer mainly prevents corrosion of CP Ti and Ti-6Al-4V alloy, whose thickness and resistance increase
sharply in the first few days of exposure to PBS solution. With longer exposure times to the PBS
solution, the structure of the barrier layer subsequently settles, and its resistance increases further.
Compared to Ti-6Al-4V alloy, CP Ti shows greater corrosion stability.

Keywords: titanium; Ti-6Al-4V alloy; oxide film; phosphate buffer solution; corrosion

1. Introduction

Titanium and its alloys possess excellent properties such as low density, good forma-
bility, high specific strength and corrosion resistance, weldability and biocompatibility,
making them desirable materials, which finds applications in different important areas such
as automobile, aerospace, chemical and petrochemical industry, military and medicine [1–5].
Titanium and its alloys are the primary materials for biomedical and dental implant appli-
cations. Almost 50% of titanium alloy production refers to Ti-6Al-4V alloy, the most used
titanium alloy globally [2]. For biomedical applications, corrosion behavior is one of the
most important criteria because the human body is an aqueous electrolyte that contains
different ions such as Cl−, PO4

3−, HCO3
−, OH−, Ca2+, Mg2+, H+, K+, Na+ etc. [6]. There-

fore, many research types were performed to understand better the corrosion behavior
of titanium and its alloys in different simulated body fluids [7–14]. The high corrosion
resistance of titanium and its alloys is due to the formation of stable and protective oxide
layer (mainly consisting of TiO2) of a thickness of 2–6 nm. Depending on the environmental
conditions, a surface oxide film consists of a two-layer structure: the inner layer is compact,
whereas the outer one is porous. The electrochemical properties of the oxide film and its
long-term stability in biological environments plays a decisive role in the biocompatibility
of titanium implants [10,15,16]. In the case of Ti-6Al-4V alloy, the presence of low contents
of aluminium and vanadium oxides (Al2O3 and V2O5) in the porous layer of the passive
film, have been detected [17–19]. These oxides can dissolve and deteriorate the passivity
of Ti-6Al-4V alloy. The results of the investigations of Alves et al. [20] have shown the
significant influence of the solution temperature and immersion time in corrosion resistance
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of titanium and Ti-6Al-4V alloys. In Hank’s solution, electrochemical measurements at
25 ◦C indicate higher corrosion resistance of Ti-6Al-4V alloys compared with pure titanium,
which was explained by the beneficial influence of Al and V alloying elements, which
reduces the dissolution rate of the passive layer formed in the solution. The same investiga-
tions on 37 ◦C have shown that the passive films have lower resistance on Ti-6Al-4V than
that of titanium due to local corrosion processes accelerated by the presence of chloride ions.
In addition, corrosion potential changes towards more positive values with time at both
temperatures. After corrosion investigations, vanadium and aluminium ions can be found
in the electrolyte [20–22]. Noumbissi et al. [23], in their review paper, based on 64 scientific
articles, points out that corrosion related to titanium and its alloys affects the health of
peri-implant soft and hard tissue and the long term survival of metal dental implants.

Gugelmin and associates [24] have investigated the stability of thin titanium dioxide
grown by the potentiodynamic method on Ti-6Al-4V surfaces up to 5.0 V in phosphate
buffered solution (PBS) and artificial blood media at different immersion times. Electro-
chemical impedance spectroscopy (EIS) measurements have shown the lower polarization
resistance after 30 days of immersion in artificial blood, which is explained by the spon-
taneous oxide dissolution. This can be originated both from the oxide thickness decrease
as the matrix rearrangement occurs during the electrolyte exposure [21,24,25]. In contrast,
in PBS solution, there is a significant increase in the polarization resistance with time up
to 10 days [24]. Merino and Mascaro [26] have been investigated passive oxide film on
Ti-grade 2 dental implant, formed in PBS and its spontaneous dissolution in artificial saliva
by EIS measurements over 24 h. Results have shown that the resistance of the passive
film on Ti-grade 2 decreases as the exposure time increases due to the breakdown of the
oxide followed by a dissolution process. The increase in impedance values with time was
also observed for Ti-6Al-4V in Ringer′s solution for the measurement period of 100 h [27].
Results of EIS measurements for Ti-15Mo alloy in PBS solution at 37 ◦C have shown the
increase of the impedance up to 24 h and then decrease up to 360 hours [28]. The initial
increase in barrier layer resistance was explained in terms of the oxide film growth, while a
slight decrease is a consequence of the chloride ion attack [28]. Zhang and associates have
investigated time-dependent corrosion of Ti-6Al-4V in 0.9% NaCl solution in the absence
and presence of H2O2 and albumin. The EIS results have shown that in all solutions, polar-
ization resistance gradually increased with immersion time and subsequently approached
a steady-state at around 70 h [29].

Although significant attention was paid to the corrosion testing of Ti and Ti alloys in
simulated body solutions, many tests were performed with the short-time corrosion mea-
surements, while the influence of electrolyte exposure time on the corrosion behaviour of Ti
and Ti-alloys was investigated in much less extent. In addition, the results obtained in long-
term investigations are sometimes contradictory, probably due to different methodologies
and investigation conditions.

Therefore, in this work, short-therm and long-therm electrochemical and corrosion
behaviour of CP Ti and Ti-6Al-4V alloy in PBS (pH = 7.4) at 37 ◦C (i.e., in simulated
physiological solution in the human body) was examined using open circuit potential
measurements, linear and potentiodynamic polarization and electrochemical impedance
spectroscopy methods, while the surface condition of the tested samples was examined by
SEM/EDS analysis.

2. Materials and Methods

Measurements were performed in a standard double wall glass reactor with three elec-
trodes: the working electrode, Pt-sheet counter electrode and saturated calomel reference
electrode (SCE) mounted in Luggin capillary. All the potential values are reported herein
to the SCE. Investigations were performed on the cylindrical samples of commercial pure
titanium, 99.6% purity (CP Ti) and Ti-6Al-4V alloy obtained from Goodfellow Cambridge
Ltd. (Huntingdon, UK). The cylindrical samples were joined with insulated copper wire,
embedded in polyacrylate to expose only the base of the cylinder to the electrolyte (surface
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area of 0.2 cm2). Before each experiment, the working electrode was abraded mechani-
cally using Metkon Forcipol 1 V grinding and polishing machine (Metkon Instruments
Inc., Bursa, Turkey) with successive grades of emery papers up to 2500 grit. Afterwards,
the electrode was polished with alumina polishing suspension (0.3 µm), ultrasonically
washed with 70% ethanol and Millipore deionized water, and transferred quickly to the
electrochemical reactor. The electrochemical behavior of CP Ti and Ti-6Al-4V alloy was
investigated in phosphate buffered saline solution (PBS), pH = 7.4, the composition of
which is shown in Table 1.

Table 1. The composition of phosphate buffered saline solution.

Salt Concentration
(mmol L−1)

Concentration
(g L−1)

NaCl 137 8.0
KCl 2.7 0.2

Na2HPO4 10 1.42
KH2PO4 1.8 0.24

A PBS solution was prepared by dissolving the weighed masses of solid salts (NaCl,
KCl, Na2HPO4 and KH2PO4) obtained from Sigma (ACS reagent grade) in deionized water,
and the pH was adjusted to 7.4. All measurements were performed at a temperature
of 37 ◦C. The electrochemical experiments were performed using a Princeton Applied
Research (Princeton, NJ, USA) PAR 273A potentiostat/galvanostat system connected with
PAR M 5210 lock-in amplifier for electrochemical impedance spectroscopy measurements.

The electrochemical behaviour of Ti and Ti-6Al-4V alloy in PBS solution was per-
formed by open circuit potential measurements (EOC) in 60 min time period, linear polari-
sation method in the potential region of ±20 mV vs. EOC with the scan rate of 0.2 mV s−1

and potentiodynamic polarisation method in potential range from −0.4 V vs. EOC up to
2.0 V with scan rate of 1 mV s−1. Linear and potentiodynamic polarization measurements
were performed after 60 min stabilization of Ti and Ti-6Al-4V alloy in PBS solution.The in-
fluence of stabilization time on the electrical properties of the phase boundary of the tested
sample (CP Ti, Ti-6Al-4V)/PBS solution was investigated by electrochemical impedance
spectroscopy. For this purpose, the electrode was stabilized on the EOC, and impedance
spectra were recorded over 14 days. Measurements were performed in the range of 50 kHz
to 30 mHz with 5 points per decade and ac voltage amplitude of 10 mV. All electrochemical
measurements were performed in triplicate to ensure reproducibility of results.

After potentiodynamic polarization measurements as well as after EIS measurements,
surface state and the elemental composition of the individual sample were determined
by Field emission scanning electron microscope (FEG SEM, Hillsboro, OR, USA) Thermo
Scientific Quattro S with attached EDXS SDD detector Ultim® Max, Oxford Instruments
for semiquantitative analysis. For imaging, backscattered (BS) as well as secondary (SE)
electrons were used at an accelerating voltage of 15 kV.

3. Results and Discussion

Figure 1 presents the evolution of the EOC as a function of time for CP Ti and Ti-6Al-4V
samples in PBS solution at 37 ◦C. EOC reflects the composite results of the electrochemical
reactions taking place at the electrode/solution interface.

Both investigated samples showed similar behavior. Namely, immediately after
immersion in the PBS solution, the potential of CP Ti and Ti-6Al-4V alloys increases
significantly and quickly towards a nobler direction. After only 20 minutes, it establishes
a stable value. The potential shift towards more positive values is a consequence of the
formation and growth of a protective oxide film on the surface of the tested samples.
Compared to the Ti-6Al-4V alloy, EOC of CP Ti is even 250 mV more positive. Namely, after
one hour, the potential of the open circuit is −150 mV for CP Ti and −400 mV for Ti-6Al-4V
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alloy. Similar behaviour was observed for Ti and Ti-6Al-4V alloy, both for PBS solution and
in other corrosive environments of the human body [8,30,31].
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Figure 1. Evolution of open circuit potential over time for investigated samples in PBS solution.

The corrosion behaviour of biocompatible materials in PBS solution was investigated
by polarization measurements, i.e., by the method of linear polarization to determine
polarization resistance (Rp) and recording potentiodynamic polarization curves in a wide
range of potentials for determining corrosion parameters and predicting anodic behavior
of Ti (Ti-6V-4Al)/PBS solution systems.

The Rp data were determined from the slope of linear i-E dependencies recorded in a
narrow potential range ±20 mV vs. EOC (Figure 2) and shown in Table 2.
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Figure 2. Linear parts of polarization curves for CP Ti and Ti-6Al-4V alloy in PBS solution.

Performing potentiodynamic polarization measurements is particularly interesting to
examine the anodic behavior of a corroding system. The potential of the sample changes
slowly in the positive direction, due to which it acts as an anode and corrodes or an oxide
layer is formed on it. To investigate the stability of the protective surface oxide film on CP Ti
and Ti-6Al-4V alloy at high anodic potentials, potentiodynamic polarization measurements
were performed in the potential range from −0.4 V vs. EOC up to 2.0 V. The representative
polarization curves obtained for both CP Ti and Ti-6Al-4V alloy in the PBS solution is
displayed in Figure 3. On the anode branch of polarization curves (potentials more positive
than corrosion potential, Ecorr), two characteristic areas of potential are observed: active
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and passive. During the anodic polarization, Ti dissolves in the active potential region and
the metal ions (in the form of Ti4+) go into solution, and the current increases exponentially
with increasing potential (i.e., a linear increase in the logarithm of the anodic current
density with potential is observed on the polarization curve). In the electrolyte solution,
Ti4+ ions come into contact with water and form TiO2 film that covers the metal surface
and slows down the further process of metal dissolving. With further anodic polarization,
the metal dissolution rate significantly slows down by the oxide film formation, which
ends at the passivation potential of the metal (Ep) with the passivation current (ip).

At that moment, the surface of the metal is completely covered with an oxide film,
and the current becomes independent of the change in potential, and a “current plateau” is
defined on the polarization curve. Namely, “current plateau” (which extends to high anode
potentials, up to 2.0 V) is associated with the thickening of the passive film involving some
transport process driven the electric field in the oxide layer [32].
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Figure 3. Potentiodynamic polarization curves of the investigated samples in PBS solution.

As seen from Figure 3, both samples exhibited similar passivation behaviour and even
up to 2.0 V the oxide films formed on both samples did not breakdown. Similar behaviour
was observed for Ti and Ti-6Al-4V alloy in different corrosive environments of the human
body [20,31,33]. For the investigated samples, characteristic values of corrosion potential
(Ecorr), corrosion current density (icorr), passivation potential (Ep), and passivation current
density (ip) were determined from the polarization curves and shown in Table 2, along
with the data for the polarization resistance (Rp). According to the polarization data, the
smaller icorr and ip and the more positive Ecorr and Ep showed CP Ti. The CP Ti sample
also has a higher value of Rp (corrosion resistance) due to the better protective properties
of the oxide film.

Table 2. Corrosion parameters for the CP Ti and Ti-6Al-4V alloy in PBS solution.

Sample Ecorr
(V)

icorr
(µA cm−2)

Ep
(V)

ip
(µA cm−2)

Rp
(kΩ cm2)

CP Ti −0.244 ± 0.012 0.23 ± 0.02 0.151 ± 0.02 2.86 ± 0.014 121.10 ± 8.36
Ti-6Al-4V −0.569 ± 0.025 0.36 ± 0.03 −0.148 ± 0.034 4.12 ± 0.022 101.22 ± 7.94

After potentiodynamic polarization measurements, the surface condition of CP Ti and
Ti-6Al-4V samples was examined by SEM, while the elemental composition of the surface
at individual positions was determined by EDS analysis. The obtained results are shown
in Figure 4 and Table 3.
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Figure 4. SEM image of (a) CP Ti and (b) Ti-6Al-4V alloy after potentiodynamic polarization
measurements in PBS solution with marked surface of EDS analysis.

Table 3. Elemental composition on marked surface on surface CP Ti and Ti-6Al-4V alloy after
potentiodynamic polarization measurements in PBS solution.

CP Ti Ti-6Al-4V

Element Spectrum 1 Spectrum 1

O 7.12 4.21
Ti 92.88 86.51
Al - 5.12
V - 3.85
Fe - 0.31

Total 100.00 100.00

EDS analysis of CP Ti shows the presence of Ti and O, while the analysis of Ti-6Al-4V
alloy shows the presence of Ti, O, Al, and V (Table 3). The presence of oxygen indicates the
fact that the surfaces of both samples are covered with a protective oxide layer. Compared
to the Ti-6Al-4V alloy, higher oxygen content was observed on the CP Ti surface, and the
oxide layer has a greater thickness. Furthermore, under the influence of anodic polarization
on both samples, oxide layers of uniform composition are formed, which is proved by
the measurements at high magnifications (Figure 5) and the analysis of surface bends at
different positions (Table 4).
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Table 4. Elemental composition on different spots (position 1–4) on surface Ti-6Al-4V alloy after
potentiodynamic polarization measurements in PBS solution.

Element Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 3

O 3.59 4.04 3.77 3.68
Al 5.29 5.60 5.22 5.23
Ti 87.88 87.34 86.96 87.62
V 3.25 3.01 4.04 3.48

Total 100.00 100.00 100.00 100.00

The electrical properties of the phase boundary of CP Ti (Ti-6Al-4V alloy)/PBS solu-
tions were determined by measuring the impedance at different stabilization times on the
EOC (up to 14 days), and the obtained results are presented in Nyquist and Bode complex
plane (Figure 6). In Figure 6, experimental points are the symbols and the line represents
the fitted results. At the first glance, the system’s response in the Nyquist complex plane
(Figure 6a,b) for the observed samples is an incomplete capacitive semicircle in the whole
frequency range, which indicates that the surfaces of both samples have extremely high
resistance (impedance). However, both samples have an additional small impedance loop
at high frequencies (which is visible by zoomed of high-frequency part of impedance
spectra). The capacitive semicircles are related to the dielectric properties of the naturally
formed oxide film on the metals surfaces.

The Bode complex plane (Figure 6c,d) shows the dependences of the absolute value of
the impedance and the phase angle on the logarithm of the frequency (log | Z | vs. log f
and the phase angle vs. log f ). At high frequencies (f > 5 kHz), the influence of electrolyte
resistance Rel is dominant in the total impedance, and the phase shift between current and
voltage is ≈0◦. At medium frequencies (f < 1 kHz), the capacitive behavior of the electrode
is expressed, which is determined by the dielectric properties of the oxide film (phase angle
is ≈90◦). This frequency range is determined by the Bode direction with a slope of ≈−1
and extends through the low-frequency range. Compared to the Ti-6Al-4V alloy, the CP
Ti sample shows a higher impedance. The impedance of both samples increases with the
time of exposure to PBS solution. These results are in accordance with the results of EIS
measurements of Fekry and Ameer [27], for the investigation of Ti-6Al-4V alloy in Ringer
solution, and with the investigations of Zhang and associates for Ti-6Al-4V alloy in 0.9%
NaCl solution [29].

Mathematical analysis showed that the obtained results deviate from the ideal behav-
ior (e.g., Bode’s slope is different from −1) due to inhomogeneities within the oxide layer
and the fact that the electrode surface at the microscopic level is not ideally smooth and
flat [34–36]. Therefore, for the observed frequency range, the electrode impedance, Z, is
described by a constant phase element (CPE), whose impedance, ZCPE, is given by the
expression [34]:

ZCPE =
[
Q(jω)n]−1 (1)

In the above equation, j is an imaginary number (j =
√
−1), ω is the circular frequency

of the ac signal (ω = 2πf ), Q is a frequency-independent constant, and is related to the
state of the surface. The exponent of a constant phase element, the magnitude of n, is also
a constant that can take on different values in the range of −1 to +1. In the case when
n = 0 the above equation describes the resistance, for n = −1 inductance, and for n = 1
capacitance.

For the diffusion process through the electrode/electrolyte phase boundary, through
the solid phase, and over the entire electrode surface, the magnitude of n takes the amount
of 0.5 [34].
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The obtained results follow the data given in the literature. It is generally accepted that
the oxide film on the surface of Ti and its alloys has a two-layer structure and consists of an
inner thin, compact film, so-called barrier film, and outer porous film (Figure 7a) [31,37–39].
The inner barrier film has an extremely high impedance, while the outer porous shows
significantly lower impedance.

Figure 7b shows the equivalent circuit which was used for analyzing the impedance
data. It consists of the electrolyte resistance, Rel (≈5 Ω cm2), connected in series with
two-time constants. The first and second-time constants are determined by the parallel
connection of the constant phase element and the resistance, the first with (QpRp) and the
second with (QbRb).

In the presented scheme, the constant phase elements, i.e., the quantities Qp and Qb,
represent the capacitances Cp and Cb of the oxide film based on the simulation of a certain
parameter np and nb. The time constant, QpRp, observed in the high-frequency range,
describes the properties of the porous part of the oxide film. In this case, Rp is the resistance
of the porous film (i.e., the resistance of the electrolyte within the pores), and Qp replaces
the capacity of the porous film. The time constant in the low-frequency range describes the
compact, inner, barrier portion of the oxide film, with Qb representing the capacity and Rb
the resistance of the inner barrier film.

By adjusting the measured frequency dependence of the impedance with the theoreti-
cal impedance function for the proposed equivalent circuit, the phase boundary parameters
of CP Ti (Ti-6Al-4V alloys)/PBS solutions were determined, and the obtained values were
given in Table 5. The value of chi-square (χ2) is very small (≈ 6 × 10−4), illustrating the
good quality of the fitted results.
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Table 5. Electrical parameters of equivalent circuit obtained by fitting the experimental results of EIS for CP Ti and Ti-6Al-4V
alloy in PBS solution at different stabilization times on EOC.

t
(h)

Qp × 106

(Ω−1 sn cm−2)
np

Rp
(Ω cm2)

Qb × 106

(Ω−1 sn cm−2)
nb

Rb
(kΩ cm2)

CP Ti

0 116.91 ± 2.59 0.92 ± 0.02 34.01 ± 2.83 55.77 ± 3.06 0.84 ± 0.02 4.64 ± 0.23
1 100.11 ± 3.20 0.96 ± 0.01 46.31 ± 2.54 47.05 ± 2.74 0.86 ± 0.01 119.63 ± 12.35
24 70.45 ± 3.57 0.97 ± 0.01 66.34 ± 3.14 32.99 ± 2.22 0.86 ± 0.01 316.83 ± 22.87
48 60.41 ± 3.80 0.96 ± 0.02 83.72 ± 3.39 29.33 ± 1.09 0.86 ± 0.01 423.20 ± 22.85
72 59.76 ± 2.31 0.96± 0.01 88.45 ± 3.87 26.42 ± 1.05 0.85 ± 0.02 519.77 ± 14.55
96 59.54 ± 2.57 0.96 ± 0.01 94.63 ± 3.53 25.37 ± 1.42 0.87 ± 0.01 652.71 ± 25.28

120 58.99 ± 2.33 0.97 ± 0.01 100.57 ± 4.01 23.95 ± 0.87 0.87 ± 0.01 691.76 ± 25.37
144 55.28 ± 3.39 0.97 ± 0.01 102.50 ± 3.79 23.44 ± 1.21 0.87 ± 0.01 683.55 ± 32.14
168 54.96 ± 2.45 0.98 ± 0.01 104.06 ± 3.77 23.09 ± 0.85 0.88 ± 0.03 688.15 ± 35.23
192 52.92 ± 3.42 0.97 ± 0.02 103.11 ± 3.83 22.58 ± 0.62 0.87 ± 0.02 728.04 ± 19.38
216 51.09 ± 2.39 0.98 ± 0.01 104.40 ± 3.90 21.76 ± 0.81 0.88 ± 0.01 738.44 ± 20.68
240 50.07 ± 2.44 0.97 ± 0.01 104.83 ± 3.95 20.47 ± 1.76 0.89 ± 0.01 750.19 ± 21.01
264 50.77 ± 2.41 0.98 ± 0.01 107.90 ± 3.13 20.48 ± 0.77 0.89 ± 0.01 766.04 ± 24.45
288 51.00 ± 2.42 0.98 ± 0.01 108.12 ± 3.97 19.74 ± 1.13 0.90 ± 0.01 778.99 ± 22.81
312 50.03 ± 2.43 0.98 ± 0.01 110.94 ± 2.13 19.65 ± 1.20 0.91 ± 0.01 796.16 ± 14.29
336 49.84 ± 2.19 0.98 ± 0.01 112.68 ± 1.92 19.63 ± 1.14 0.91 ± 0.02 810.66 ± 12.69

Ti-6Al-4V

0 124.20 ± 3.10 0.90 ± 0.01 30.52 ± 2.59 68.58 ± 3.12 0.82 ± 0.03 4.24 ± 0.57
1 98.54 ± 3.49 0.95 ± 0.02 40.76 ± 2.74 61.63 ± 2.77 0.84 ± 0.02 74.70 ± 11.07
24 81.51 ± 5.21 0.96 ± 0.01 50.14 ± 2.94 50.38 ± 2.83 0.85 ± 0.01 254.81 ± 12.42
48 77.81 ± 4.21 0.95 ± 0.01 54.40 ± 2.58 41.04 ± 2.08 0.84 ± 0.01 388.13 ± 15.33
72 70.31 ± 4.87 0.96 ± 0.01 55.81 ± 2.50 37.97 ± 1.07 0.85 ± 0.01 405.24 ± 17.34
96 66.50 ± 3.55 0.96 ± 0.01 57.52 ± 1.52 35.51 ± 2.34 0.84 ± 0.01 429.52 ± 12.13

120 65.41 ± 3.76 0.96 ± 0.01 56.84 ± 2.61 31.77 ± 2.77 0.85 ± 0.01 445.42 ± 12.83
144 62.44 ± 3.67 0.97 ± 0.01 56.60 ± 2.59 30.60 ± 1.72 0.86 ± 0.01 451.38 ± 12.57
168 60.58 ± 3.88 0.97 ± 0.01 57.55 ± 2.80 30.04 ± 1.75 0.85 ± 0.02 464.35 ± 11.84
192 59.16 ± 3.71 0.96 ± 0.01 60.93 ± 3.32 29.30 ± 0.99 0.86 ± 0.01 476.00 ± 12.39
216 56.79 ± 3.42 0.96 ± 0.02 66.62 ± 2.60 28.59 ± 0.95 0.86 ± 0.01 482.02 ± 13.48
240 56.79 ± 3.89 0.97 ± 0.01 72.51 ± 1.58 27.96 ± 1.22 0.86 ± 0.02 486.35 ± 13.22
264 55.68 ± 3.57 0.98 ± 0.01 71.40 ± 4.22 26.36 ± 1.06 0.87 ± 0.01 494.58 ± 12.86
288 54.42 ± 3.66 0.97 ± 0.01 76.23 ± 3.58 25.66 ± 1.24 0.88 ± 0.01 500.24 ± 12.45
312 53.72± 4.19 0.98 ± 0.01 79.47 ± 2.95 24.82 ± 1.39 0.88 ± 0.01 507.23 ± 12.99
336 52.63 ± 3.41 0.97 ± 0.01 86.58 ± 1.80 23.97 ± 1.36 0.87 ± 0.02 518.72 ± 13.30
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To better explain the situation, the time dependences of the parameters depicting the
barriers and the porous layer on the CP Ti and Ti-6Al-4V alloys were observed separately
(Figure 8).

As shown in Figure 8a, the resistance of the barrier film on CP Ti is exceptionally
high. It increases with exposure time, especially in the first five days, where an increase
of ≈5 kΩ cm2 (immediately after immersion in the solution) to ≈700 kΩ cm2 (after five
days) was observed. Further exposure of the sample to PBS solution shows a slight
increase in the resistance of the barrier film, and after 14 days it values is ≈800 kΩ cm2. In
addition, the capacity of the barrier film is relatively tiny and decreases slightly with time
(somewhat faster in the first three days) and, after 14 days, reaches a stationary value of
≈19 × 10−6 Ω−1 sn cm−2.
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Figure 8. Dependence of the inner barrier layer (Qb and Rb) and the outer porous layer (Qp and Rp)
parameters on the stabilization time for (a) CP Ti and (b) Ti-6Al-4V alloy in PBS.

According to the plate capacitor model, the capacity is inversely proportional to the
thickness, d (C = ε εo/d; where εo is the dielectric constant of vacuum (8.85 × 10−12 F m−1),
and ε is the dielectric constant of the TiO2 film (≈100) [40]. Therefore, the decrease in the
size of Q (from ≈55 to ≈19 × 10−6 Ω−1 sn cm−2) with increasing time corresponds to an
adequate increase in the thickness of the barrier part of the oxide layer.

On the other hand, the resistance of the porous layer on CP Ti is relatively small
and increases with the exposure time of the metal to the electrolyte (roughly from 35 to
110 Ω cm2). This indicates the fact that the pores of the oxide film are most likely filled
with an electrolyte solution. The capacity of the porous film after 14 days of exposure
is ≈50 × 10−6 Ω−1 sn cm−2. Due to the open structure, it is difficult to determine the
thickness of the outer porous layer [41]. Based on the above, the corrosion of CP Ti
is mainly prevented by the inner barrier layer, whose thickness and resistance increase
sharply in the first few days of exposure to PBS solution, after which the thickness remains
approximately constant and a subsequent arrangement of the structure further increases
the film resistance.
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The film on Ti-6Al-4V alloy behaves similarly (Figure 8b), with a minor exception
relating to the porous part of the oxide layer. Namely, it was noticed that the resistance of
the porous layer increases sharply with prolonged exposure to the electrolyte solution. In
addition, from Figure 8, it is clearly seen that the oxide film (barrier and porous part) on
CP Ti has a higher resistance compared to the film formed in PBS solution on Ti-6Al-4V
alloy. The CP Ti sample also has a lower barrier and porous film capacity value (i.e., greater
thickness of both films), indicating better protective properties of the surface film on CP Ti
than Ti-6Al-4V alloy.

After impedance measurements, the surface condition of CP Ti and Ti-6Al-4V sam-
ples were also examined by SEM/EDS analysis and the obtained results are shown in
Figures 9 and 10 and Tables 6 and 7. Since backscattered electrons that are atomic sensitive
were used for the imaging, the number of electrons backscattered from a specimen increases
with the average atomic number of the specimen. The darker spots thus represent the lower
average atomic number region of the specimen. On the other hand, the secondary electrons
provide information on surface topography. Anyway, the areas where the elementary
composition was measured are marked in Figures, and the obtained results (for different
positions) are listed in the corresponding Tables.

EDS analysis of CP Ti (Table 6) shows the presence of Ti and O at varying amounts
at positions 1–4, which indicates the fact that the entire surface of CP Ti is covered with a
protective oxide layer of TiO2 [6,10,17,20,41]. As already established, the oxide layer has a
two-layer structure, and the outer part of the oxide layer is porous in nature. Namely, in
some places of the surface (positions 1 and 2) EDS analysis revealed the presence of Na and
P, which were incorporated from the electrolyte, probably into the pores of the outer part
of the oxide layer. Furthermore, aggressive Cl- ions were not observed on the Ti surface,
and thus, the oxide film was undamaged.
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Table 6. Elemental composition on different spots (position 1–4) on surface CP Ti after impedance
measurements in PBS solution.

Element Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4

O 8.59 14.11 14.13 5.72
Na 0.09 0.14 - -
P 0.08 0.09 - -

Ca - 0.22 0.19 -
Ti 91.24 85.44 85.68 94.28

Total 100.00 100.00 100.00 100.00

EDS analysis of Ti-6Al-4V alloy (Table 7) confirmed the expected presence of Ti, Al V
and O in different percentages depending on the observed surface location (positions 1–3).
An extremely high percentage of oxygen was observed at position 1, which indicates the
fact that the entire surface of the alloy is covered with a rather non-uniform oxide layer.
Furthermore, in positions 1 and 2, certain content of Cl− ions was observed, which implies
the possible occurrence of damage in the oxide layer. In addition to the above, over the
entire surface (positions 1–3), EDS analysis revealed the presence of P (and Na, position
1), which was probably incorporated from the electrolyte into the pores of the outer part
of the oxide. Compared to CP Ti, a higher component content from the PBS solution is
incorporated into the oxide layer of Ti alloy.
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Table 7. Elemental composition of Ti-6Al-4V alloy on different spots (position 1–3) on surface
Ti-6Al-4V alloy after impedance measurements in PBS solution.

Element Spectrum 1 Spectrum 2 Spectrum 3

O 28.89 3.78 2.79
Na 0.26 - -
Al 11.52 5.68 6.66
P 0.18 0.05 0.01
Cl 0.07 0.02 -
Ca 0.12 - -
Ti 57.01 83.97 86.80
V 1.95 6.50 3.75

Total 100.00 100.00 100.00
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The EIS results obtained indicate that a subsequent increase of the thickness and
resistance (ordering of the structure) of natural oxide layers occurs during long-term
stabilization of Ti and its alloy at the open circuit potential, which implies better corrosion
stability of these biomaterials in the biological fluid.

Although the indigenous passive oxide film suppresses the Ti and Ti alloy corrosion
to promote biocompatibility, the major disadvantage of Ti surfaces is their continuous
depassivation/repassivation under natural mechanical stress in body fluids [42–44]. These
two competing processes can lead to the incorporation of different alloy elements and
surrounding solutions into the passive film [16,17,42,44], which is even in static conditions
confirmed in this paper by EDS analysis (due to the poorer corrosion stability of the alloy,
the content of components that are incorporated from the PBS solution into its oxide layer
is also higher). These alloying elements and impurities are most certainly not involved in
significant content. Still, dissolution of alloying elements and incorporation of different
elements from surrounding solutions into the passive film when the implant is present
in the body are possible. These effects may play a role in orthopedic implants since
repassivation of Ti at the osseous implantation site leads to the adsorption of calcium and
phosphate ions into the passive film [42,44].

Taking this into account, the need arises for suitable surface modification of Ti and its
alloys that will result in improved biocompatibility and osteointegration, with simultaneous
reduction of strong bacterial seeding on the implant surface [42,44–48], which will be
considered through the future research. The starting point in this direction of research is that
the anodic polarization of CP Ti and Ti-6Al-4V alloy (in PBS, and probably other suitable
electrolytes) leads to surface modification with the formation of oxide films with uniform
composition. As can be seen, the anodic oxide films on CP Ti and Ti-6Al-4V alloy consist
only of base metal components and oxygen (Tables 3 and 4), and the electric field during
anodic polarization does not draw electrolyte components into the oxide layer. It was also
observed that the anodic oxide films were thicker at CP Ti (higher oxygen content) than at
Ti-6Al-4V alloy. On the other hand, natural oxide films formed by long-term exposure of
CP Ti and Ti-6Al-4V alloy to PBS solution by a slow depassivation/repassivation process
can draw electrolyte components into the oxide layer (Tables 6 and 7).

4. Conclusions

The electrochemical behavior of biocompatible CP Ti and Ti-6Al-4V alloy materials in
PBS solution at 37 ◦C was studied. The analysis of the obtained results established that:

Immediately after immersion in PBS solution, the potential of CP Ti and Ti-6Al-4V
alloys increases significantly and very quickly; after only 20 min, it establishes a stable
value. Compared to Ti-6Al-4V alloy, the potential of pure CP Ti open circuit is even 250 mV
more positive;

The corrosion resistance of CP Ti is significantly higher than the resistance of the
Ti-6Al-4V alloy. Namely, CP Ti has a lower corrosion current and passivation current and a
higher polarization resistance;

Anode oxide films on CP Ti and Ti-6-Al-4V alloy have a uniform composition (consist-
ing of base metal components and oxygen);

The resistance of CP Ti and Ti-6Al-4V alloys is a consequence of forming a surface
oxide layer that has a two-layer structure and consists of an inner barrier and an outer
porous film. The inner barrier film has an extremely high resistance, while the outer porous
film shows significantly lower resistance, and its pores are mostly filled with electrolyte
solution (confirmed by EDS surface analysis);

The inner barrier layer prevents corrosion of CP Ti and Ti-6Al-4V alloys, whose
thickness and resistance increase sharply in the first few days of exposure to PBS solution.
The film resistance is further increased by subsequent adjustment of the structure.
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