Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Waste Electrical and Electronic Equipment (WEEE)
2.1.2. Mining Wastes (MW)
2.2. Experimental Procedure
2.2.1. Leaching of WEEE
2.2.2. Leaching of MW
3. Results
3.1. Characterization of the WEEE
3.2. Characterization of the MW
3.3. Leaching of Au and Cu from WEEE and Leaching of Ag Contained in the MW
3.3.1. Effect of the Thiosemicarbazide Concentration
3.3.2. Effect of the Temperature
3.3.3. Effect of the Stirring Rate
3.3.4. Effect of the pH
3.3.5. Leaching of Ag from MW: Effect of the O2 Partial Pressure
3.3.6. Solid by-Products from WEEE and Kinetic Equations for Leaching of WEEE and MW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurung, M.; Adhikari, B.B.; Kawakita, H.; Ohto, K.; Inoue, K.; Alam, S. Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 2013, 133, 84–93. [Google Scholar] [CrossRef]
- Petter, P.M.H.; Veit, H.M.; Bernardes, A.M. Evaluation of gold and silver leaching from printed circuit board cellphones. Waste Manag. 2014, 34, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Lister, T.E. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Waste Manag. 2018, 74, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Canda, L.; Heput, T.; Ardelean, E. Methods for recovering precious metals from industrial waste. IOP Conf. Ser. Mater. Sci. Eng. 2016, 106, 012020. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Valderrama, M.I.; Salinas-Rodríguez, E.; Montiel-Hernández, J.F.; Rivera-Landero, I.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Flores-Arenas, A. Urban Mining and Electrochemistry: Cyclic Voltammetry Study of Acidic Solutions from Electronic Wastes (Printed Circuit Boards) for Recovery of Cu, Zn, and Ni. Metals 2017, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Cayumil, R.; Ikram-Ul-Haq, M.; Khanna, R.; Saini, R.; Mukherjee, P.S.; Mishra, B.K.; Sahajwalla, V. High temperature investigations on optimizing the recovery of copper from waste printed circuit boards. Waste Manag. 2018, 73, 556–565. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Oraby, E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives—A review. Resour. Conserv. Recycl. 2018, 139, 122–139. [Google Scholar] [CrossRef]
- Cho, B.G.; Lee, J.; Yoo, K. Valuable metal recycling. Metals 2018, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Birloaga, I.; Coman, V.; Kopacek, B.; Vegliò, F. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Waste Manag. 2014, 34, 2581–2586. [Google Scholar] [CrossRef]
- Ajiwe, V.I.E.; Anyadiegwu, I.E. Recovery of silver from industrial wastes, cassava solution effects. Sep. Purif. Technol. 2000, 18, 89–92. [Google Scholar] [CrossRef]
- Roldán-Contreras, E.; Hernández-Ávila, J.; Cerecedo-Sáenz, E.; Reyes-Valderrama, M.I.; Salinas-Rodríguez, E. Use of the system S2O3(2−)-O2 for the Leaching of Precious Metals Contained in a Mineral From Molango in the State of Hidalgo, Mexico. Eur. Sci. J. 2018, 14, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Salinas-Rodríguez, E.; Hernández-Ávila, J.; Rivera-Landero, I.; Cerecedo-Sáenz, E.; Reyes-Valderrama, M.I.; Correa-Cruz, M.; Rubio-Mihi, D. Leaching of silver contained in mining tailing, using thiosulfate: A kinetic study. Hydrometallurgy 2016, 160, 6–11. [Google Scholar] [CrossRef]
- Quinet, P.; Proost, J.; Van Lierde, A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Min. Metall. Explor. 2005, 22, 17–22. [Google Scholar] [CrossRef]
- Grosse, A.C.; Dicinoski, G.W.; Shaw, M.J.; Haddad, P.R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy 2003, 69, 1–21. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.-L.; Liu, W. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag. 2012, 32, 1209–1212. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Srinivasakannan, C.; Zhang, L.; Yin, S.; Yang, K.; Xie, H. Efficient cleaning extraction of silver from spent symbiosis lead-zinc mine assisted by ultrasound in sodium thiosulfate system. Ultrason. Sonochem. 2018, 49, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Lampinen, M.; Laari, A.; Turunen, I. Ammoniacal thiosulfate of pressure oxidized sulfide gold concentrate with low reagent consumption. Hydrometallurgy 2015, 151, 1–9. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Li, Q.; Yin, W.; Jiang, T.; Li, G. Thiosulfate leaching of Au, Ag and Pb from a high Sn, Pb and Sb bearing decopperized anode slime. Hydrometallurgy 2016, 164, 278–287. [Google Scholar] [CrossRef]
- Abbruzzese, C.; Fornari, P.; Massida, R.; Vegliò, F.; Sbaldini, S. Thiosulfate leaching for gold hydrometallurgy. Hydrometallurgy 1995, 39, 265–276. [Google Scholar] [CrossRef]
- Rivera, I.; Patiño, F.; Roca, A.; Cruells, M. Kinetics of metallic silver leaching in the O2-thiosulfate system. Hydrometallurgy 2015, 156, 63–70. [Google Scholar] [CrossRef]
- Roldán-Contreras, E.; Salinas-Rodríguez, E.; Hernández-Ávila, J.; Cerecedo-Sáenz, E.; Rodríguez-Lugo, V.; Jeldres, R.I.; Toro, N. Leaching of Silver and Gold Contained in a Sedimentary Ore, Using Sodium Thiosulfate; A preliminary Kinetic Study. Metals 2020, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Beyer, H.; Walter, W. Manual de Química Orgánica, 1st ed.; Editorial Reverté S.A.: Barcelona, Spain, 1987; pp. 186–188. (In Spanish) [Google Scholar]
- Donovick, R.; Pansy, F.; Striker, G.; Bernstein, J. The Chemoterapy of Experimental Tuberculosis. Inst. Med. Res. 1950, 59, 667–674. [Google Scholar]
- Yousef, T.A.; Alduaij, O.K.; Ahmed, S.F.; Abu El-Reash, G.M.; El-Gammal, O.A. Structural, DFT and biological studies on Cr(III) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazine. J. Mol. Struct. 2016, 1125, 788–799. [Google Scholar] [CrossRef]
- Xiong, Y.; Wan, L.; Xuan, J.; Wang, Y.; Xing, Z.; Shan, W.; Lou, Z. Selective recovery of Ag(I) coordination anion from simulate nickel electrolyte using corn stalk adsorbent modified by ammonia-thiosemicarbazide. J. Hazard. Mater. 2016, 301, 277–285. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Cao, L.; Zhang, X.; Yang, C. Gold-recovery PVDF membrane functionalized with thiosemicarbazide. Chem. Eng. J. 2015, 280, 399–408. [Google Scholar] [CrossRef]
- Villalobos, L.F.; Neelakanda, P.; Karunakaran, M.; Cha, D.; Peinemann, K.-V. Poly-thiosemicarbazide/gold nanoparticles catalytic membrane: In-situ growth of well-dispersed, uniform and stable gold nanoparticles in a polymeric membrane. Catal. Today 2014, 236, 92–97. [Google Scholar] [CrossRef]
- Villalobos, L.F.; Yapici, T.; Peinemann, K.-V. Poly-thiosemicarbazide membrane for gold recovery. Sep. Purif. Technol. 2014, 136, 94–104. [Google Scholar] [CrossRef]
- Villalobos, L.F. Poly-Thiosemicarbazide Membrane for Gold Adsorption and In-Situ Growth of Gold Nanoparticles. Master’s Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2012. [Google Scholar]
- Sabermahani, F.; Taher, M.A.; Bahrami, H.; Hassani, Z. Chemical modification of alumina surface by immobilization of 1-((5-nitrofuran-2-yl)methylene) thiosemicarbazide for extractive concentration of silver ions. Int. J. Environ. Anal. Chem. 2013, 93, 265–278. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Wadsworth, M.E. (Eds.) Cinética De Los Procesos De La Metalurgia Extractiv; Editorial Trillas: Bogota, Colombia, 1986; pp. 141–148. (In Spanish) [Google Scholar]
- Ballester, A.; Verdeja, L.F.; Sancho, J. Metalurgia Extractiva, Fundamentos; Editorial Síntesis: Madrid, Spain, 2000; Volume 1, pp. 182–189. (In Spanish) [Google Scholar]
- Hernández, J.; Rivera, I.; Patiño, F.; Juárez, J.C. Estudio Cinético de la Lixiviación de Plata en el Sistema S2O3 (2−)-O2-Cu2+ Contenido en Residuos Minero-Metalúrgicos. Infor. Tecnol. 2013, 24, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, B.; Cui, M.; Li, Q.; Liu, X.; Jiang, T.; Lyu, X. Thiosulfate leaching of gold catalyzed by hexaamminecobalt (III): Electrochemical behavior and mechanisms. Electrochim. Acta 2021, 399, 139393. [Google Scholar] [CrossRef]
- Carrión, C.R.W. Lixiviación de minerales de oro de la Mina Gaparina con Tiosulfato: Una alternativa ecológica al uso del cianuro. Master’s Thesis, Universidad Nacional del Centro de Perú, Huancayo, Peru, 2017. (In Spanish). [Google Scholar]
- Lopez-De-Alba, P.L.; Lopez-Martinez, L.; Amador-Hernandez, J. Determinación espectrofotometrica de cobre en formulaciones medicas, salvado de trigo y aguas potables. Bol. Soc. Chil. Quím. 1999, 44, 469–477. (In Spanish) [Google Scholar] [CrossRef]
- Ahmad, M.; Manzoor, K.; Venkatachalam, P.; Ikarm, S. Kinetic and thermodynamic evaluation of adsorption of Cu(II)by thiosemicarbazide chitosan. Int. J. Biol. Macromol. 2016, 92, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Domic, E. Hidrometalurgia: Fundamentos, Procesos y Aplicaciones, 1st ed.; Autor-Editor genérico; Ciudad de Santiago de Chile Andros Impresores: Santiago, Chile, 2001; pp. 84–85, (In Spanish). ISBN 978-956-291-083-05. [Google Scholar]
Parameters | Experimental Conditions |
---|---|
(mol∙m−3) | 50; 150; 250; 300 and 400 |
pH | 6.5; 7.5; 8.5; 9.5; 10.5 and 11.5 |
Sample weight (g) | 10 |
Temperature (K) | 288, 298, 308, 318, and 328 K |
Stirring system | Mechanical |
Pressure | Atmospheric |
Stirring rate (RPM) | 200, 400, 600, 800, and 1000 |
Parameters | Experimental Conditions |
---|---|
(mol∙m−3) | 100; 200; 300; 400 and 500 |
pH | 4; 6; 8; 10 and 12 |
Sample weight (g) | 40 |
Temperature (K) | 288, 298, 308, 318, and 328 |
Stirring system | Mechanical |
Pressure | Atmospheric and 0.2 atm |
Stirring rate (RPM) | 200, 300, 400, 600 and 800 |
Sample | Element | Concentration (mg/kg) |
---|---|---|
1 | Cu | 2211.8027 |
Au | 23.1853 | |
2 | Cu | 2275.9366 |
Au | 23.2759 |
Element 1 | Wt. (%) AAS | Wt (%) XRF |
---|---|---|
SiO2 | 70.43 | 73.30 |
Al2O3 | 7.32 | 6.50 |
Fe2O3 | 2.80 | 2.80 |
* SO3 | 1.14 | 0.94 |
K2O | 0.80 | 0.80 |
CaO | 0.69 | 0.69 |
Na2O | 2.32 | 0.08 |
TiO2 | 0.53 | 0.30 |
MgO | 0.54 | 0.55 |
MnO | 0.73 | 0.73 |
P2O5 | 0.12 | 0.12 |
Ag | 51 g/ton | 56 g/ton |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerecedo-Sáenz, E.; Cárdenas-Reyes, E.A.; Rojas-Calva, A.H.; Reyes-Valderrama, M.I.; Rodríguez-Lugo, V.; Toro, N.; Gálvez, E.; Acevedo-Sandoval, O.A.; Hernández-Ávila, J.; Salinas-Rodríguez, E. Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes. Materials 2021, 14, 7329. https://doi.org/10.3390/ma14237329
Cerecedo-Sáenz E, Cárdenas-Reyes EA, Rojas-Calva AH, Reyes-Valderrama MI, Rodríguez-Lugo V, Toro N, Gálvez E, Acevedo-Sandoval OA, Hernández-Ávila J, Salinas-Rodríguez E. Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes. Materials. 2021; 14(23):7329. https://doi.org/10.3390/ma14237329
Chicago/Turabian StyleCerecedo-Sáenz, Eduardo, Edgar A. Cárdenas-Reyes, Abner H. Rojas-Calva, Ma. Isabel Reyes-Valderrama, Ventura Rodríguez-Lugo, Norman Toro, Edelmira Gálvez, Otilio A. Acevedo-Sandoval, Juan Hernández-Ávila, and Eleazar Salinas-Rodríguez. 2021. "Use of the O2-Thiosemicarbazide System, for the Leaching of: Gold and Copper from WEEE & Silver Contained in Mining Wastes" Materials 14, no. 23: 7329. https://doi.org/10.3390/ma14237329