Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials Preparation
2.2. Microstructure Characterization
2.3. Immersion Measurements
2.3.1. Immersion Observation Tests
2.3.2. Hydrogen Evolution and Weight Loss Test
2.3.3. Electrochemical Measurements
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Corrosion Morphology Characterization
3.2.1. Mg–Ca Alloy
3.2.2. Mg–Al–Ca Alloy
3.3. Hydrogen Evolution and Weight Loss Test
3.4. Electrochemical Measurements
3.4.1. EIS Analysis
3.4.2. Potential Dynamic Polarization Curves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- You, S.; Huang, Y.; Kainer, K.U.; Hort, N. Recent research and developments on wrought magnesium alloys. J. Magnes. Alloys 2017, 5, 239–253. [Google Scholar] [CrossRef]
- Yu, S.; Liu, C.; Gao, Y.; Jiang, S.; Yao, Y. Microstructure, texture and mechanical properties of Mg-Gd-Y-Zr alloy annular forging processed by hot ring rolling. Mater. Sci. Eng. A 2017, 689, 40–47. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Zou, Q.; Le, Q.; Wen, C.; Atrens, A. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long-period stacking ordered structure for Mg-air battery. Electrochim. Acta 2020, 367, 137518. [Google Scholar] [CrossRef]
- Feng, B.; Liu, G.; Yang, P.; Huang, S.; Qi, D.; Chen, P.; Wang, C.; Du, J.; Zhang, S.; Liu, J. Different role of the second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution. J. Magnes. Alloys 2021. [Google Scholar] [CrossRef]
- Wu, S.X.; Wang, S.R.; Wang, G.Q.; Yu, X.C.; Liu, W.T.; Chang, Z.Q.; Wen, D.S. Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening. Trans. Nonferrous Met. Soc. China Engl. Ed. 2019, 29, 1641–1652. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Zeng, R.; Dietzel, W.; Witte, F.; Hort, N.; Blawert, C. Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater. 2008, 10, 3–14. [Google Scholar] [CrossRef]
- Etim, I.P.; Zhang, W.; Tan, L.; Yang, K. Influence of stamping on the biodegradation behavior of Mg–2Zn-0.5Nd (ZN20) sheet. Bioact. Mater. 2020, 5, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef]
- Pokharel, D.B.; Liping, W.; Dong, J.; Wei, X.; Etim, I.I.N.; Subedi, D.B.; Umoh, A.J.; Ke, W. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid. J. Mater. Sci. Technol. 2021, 66, 202–212. [Google Scholar] [CrossRef]
- Xin, Y.; Huo, K.; Tao, H.; Tang, G.; Chu, P.K. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008, 4, 2008–2015. [Google Scholar] [CrossRef]
- Kang, Y.; Du, B.; Li, Y.; Wang, B.; Sheng, L.; Shao, L.; Zheng, Y.; Xi, T. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. J. Mater. Sci. Technol. 2019, 35, 6–18. [Google Scholar] [CrossRef]
- Song, M.S.; Zeng, R.C.; Ding, Y.F.; Li, R.W.; Easton, M.; Cole, I.; Birbilis, N.; Chen, X.B. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. J. Mater. Sci. Technol. 2019, 35, 535–544. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Yuan, T.; Xie, Q.; Liu, H.; Ma, A. Recent Progress on Corrosion Behavior and Mechanism of Mg–RE Based Alloys with Long Period Stacking Ordered Structure. Met. Mater. Int. 2020, 26, 551–563. [Google Scholar] [CrossRef]
- Srinivasan, A.; Blawert, C.; Huang, Y.; Mendis, C.L.; Kainer, K.U.; Hort, N. Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution. J. Magnes. Alloys 2014, 2, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Willbold, E.; Gu, X.; Albert, D.; Kalla, K.; Bobe, K.; Brauneis, M.; Janning, C.; Nellesen, J.; Czayka, W.; Tillmann, W.; et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015, 11, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, D.; Lu, X.; Zhang, Y.; Tan, L.; Liu, Y.; Wang, Q. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys. J. Mater. Sci. Technol. 2020, 47, 190–201. [Google Scholar] [CrossRef]
- Zeng, R.C.; Qi, W.C.; Cui, H.Z.; Zhang, F.; Li, S.Q.; Han, E.H. In vitro corrosion of as-extruded Mg-Ca alloys-The influence of Ca concentration. Corros. Sci. 2015, 96, 23–31. [Google Scholar] [CrossRef]
- Zeng, R.C.; Sun, L.; Zheng, Y.F.; Cui, H.Z.; Han, E.H. Corrosion and characterisation of dual-phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features. Corros. Sci. 2014, 79, 69–82. [Google Scholar] [CrossRef]
- Yang, J.; Peng, J.; Nyberg, E.A.; Pan, F.S. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy. Appl. Surf. Sci. 2016, 369, 92–100. [Google Scholar] [CrossRef]
- Yin, P.; Li, N.F.; Lei, T.; Liu, L.; Ouyang, C. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys. J. Mater. Sci. Mater. Med. 2013, 24, 1365–1373. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Wang, J.; Wang, J.; Park, J.S.; Zeng, X. Highly deformable Mg-Al–Ca alloy with Al2Ca precipitates. Acta Mater. 2020, 200, 236–245. [Google Scholar] [CrossRef]
- Wu, P.; Xu, F.; Deng, K.; Han, F.; Zhang, Z.; Gao, R. Effect of extrusion on corrosion properties of Mg-2Ca-ΧAl (Χ = 0, 2, 3, 5) alloys. Corros. Sci. 2017, 127, 280–290. [Google Scholar] [CrossRef]
- Dabah, E.; Ben-Hamu, G.; Lisitsyn, V.; Eliezer, D.; Shin, K.S. The influence of Ca on the corrosion behavior of new die-cast Mg-Al-based alloys for elevated temperature applications. J. Mater. Sci. 2010, 45, 3007–3015. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Südholz, A.D.; Kirkland, N.T.; Buchheit, R.G.; Birbilis, N. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid-State Lett. 2011, 14, 5–8. [Google Scholar] [CrossRef]
- Gao, J.C.; Wu, S.; Wang, Y.; Qiao, L.Y. Study on corrosion and degradation behavior of Mg-Ca alloy in simulated body fluid. Mater. Sci. Forum 2009, 610–613, 942–945. [Google Scholar] [CrossRef]
- Seong, J.W.; Kim, W.J. Mg-Ca binary alloy sheets with Ca contents of ≤1 wt.% with high corrosion resistance and high toughness. Corros. Sci. 2015, 98, 372–381. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Zhang, Z.Q.; Tian, X.J.; Wang, Z.L.; Zeng, R.C. Corrosion Resistance, and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition. Acta Metall. Sin. Engl. Lett. 2021, 34, 25–38. [Google Scholar] [CrossRef]
- Wang, W.; Chen, S.Y.; Qiao, K.; Peng, P.; Han, P.; Wu, B.; Wang, C.X.; Wang, J.; Wang, Y.H.; Wang, K.S. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al–Ca Alloy Prepared by Friction Stir Processing. Acta Metall. Sin. Engl. Lett. 2021. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; St. John, D.; Wu, X.; Nairn, J. The anodic dissolution of magnesium in chloride and sulfate solutions. Corros. Sci. 1997, 39, 1981–2004. [Google Scholar] [CrossRef]
- Liang, S.M.; Chen, R.S.; Blandin, J.J.; Suery, M.; Han, E.H. Thermal analysis and solidification pathways of Mg-Al-Ca system alloys. Mater. Sci. Eng. A 2008, 480, 365–372. [Google Scholar] [CrossRef]
- Ninomiya, R.; Ojiro, T.; Kubota, K. Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Metall. Mater. 1995, 43, 669–674. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, B.; Yang, H.; Yang, Q.; Dai, J.; Pan, F. Influence of the Al2Ca phase on microstructure and mechanical properties of Mg-Al-Ca alloys. J. Alloys Compd. 2015, 647, 357–363. [Google Scholar] [CrossRef]
- Luo, A.A.; Powell, B.R.; Balogh, M.P. Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 2002, 33, 567–574. [Google Scholar] [CrossRef]
Alloys | Al | Ca | Mn | Zn | Mg |
---|---|---|---|---|---|
Mg–Ca | - | 3.01 | 0.34 | 0.011 | Bal. |
Mg–Al–Ca | 3.64 | 2.56 | 0.35 | 0.013 | Bal. |
State | RS | Qdl | ndl | Rt | Qf | nf | Rf | RL | L |
---|---|---|---|---|---|---|---|---|---|
Mg–Ca + NaCl | 9.84 | 2.19 × 10−5 | 0.99 | 31.26 | 4.11 × 10−5 | 0.99 | 2.296 | 7.462 | 80.77 |
Mg–Ca + Na2SO4 | 7.83 | 9.67 × 10−6 | 0.99 | 104.8 | 7.22 × 10−4 | 0.56 | 45.09 | / | / |
Mg–Al–Ca + NaCl | 9.70 | 8.89 × 10−6 | 0.99 | 366.3 | 3.28 × 10−5 | 0.96 | 5.543 | 85.28 | 200.4 |
Mg–Al–Ca + Na2SO4 | 7.47 | 6.41 × 10−6 | 0.99 | 633.4 | 3.23 × 10−4 | 0.65 | 293.8 | / | / |
State | Ecorr (VSCE) | Icorr (μA cm−2) | Bc (mV Decade−1) |
---|---|---|---|
Mg–Ca + NaCl | −1.66 | 841.8 | 62.57 |
Mg–Ca + Na2SO4 | −1.53 | 129.9 | 58.61 |
Mg–Al–Ca + NaCl | −1.58 | 98.08 | 40.02 |
Mg–Al–Ca + Na2SO4 | −1.60 | 30.37 | 59.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Ye, S.; Feng, B.; Liu, J.; Huang, S.; Liu, G.; Zhang, W.; Tang, W.; Zhu, S.; Zhang, S. Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions. Materials 2021, 14, 7140. https://doi.org/10.3390/ma14237140
Yang P, Ye S, Feng B, Liu J, Huang S, Liu G, Zhang W, Tang W, Zhu S, Zhang S. Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions. Materials. 2021; 14(23):7140. https://doi.org/10.3390/ma14237140
Chicago/Turabian StyleYang, Peixu, Songbo Ye, Baojing Feng, Jinhui Liu, Sensen Huang, Guonan Liu, Weidong Zhang, Weineng Tang, Shijie Zhu, and Shaojun Zhang. 2021. "Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions" Materials 14, no. 23: 7140. https://doi.org/10.3390/ma14237140
APA StyleYang, P., Ye, S., Feng, B., Liu, J., Huang, S., Liu, G., Zhang, W., Tang, W., Zhu, S., & Zhang, S. (2021). Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions. Materials, 14(23), 7140. https://doi.org/10.3390/ma14237140