Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Solid Powders
2.1.2. Alkali-Activated Solution
2.1.3. Fine Aggregate
2.2. Preparation of Samples
2.3. Experimental Methods
2.3.1. Determination of Fluidity
2.3.2. Determination of Conductivity and Total Dissolved Solid (TDS)
2.3.3. Determination of Bulk Density and Porosity
2.3.4. Determination of Long-Term Drying Shrinkage
2.3.5. Determination of Long-Term Mechanical Strengths
2.3.6. Characterization of Microstructure and Gel Product
3. Results and Discussion
3.1. The Fresh Properties of CS–FA–GEO Mixtures
3.2. The Long-Term Bulk Density of CS–FA–GEO Composites
3.3. The Surface Characteristic and Porosity of CS–FA–GEO Composites
3.4. The Long-Term Drying Shrinkage of CS–FA–GEO Composites
3.5. The Long-Term Flexural and Compressive Strengths of CS–FA–GEO Composites
3.6. Characterization of Microstructures and Gel Products in CS–FA–GEO Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tho-In, T.; Sata, V.; Boonserm, K.; Chindaprasirt, P. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J. Clean. Prod. 2018, 172, 2892–2898. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Embong, R.; Kusbiantoro, A.; Shafiq, N.; Nuruddin, M.F. Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J. Clean. Prod. 2016, 112, 816–822. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cem. Concr. Res. 2015, 72, 48–53. [Google Scholar] [CrossRef]
- Sarker, P.K.; McBeath, S. Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 2015, 90, 91–98. [Google Scholar] [CrossRef]
- Shi, C.J.; Jimenez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Sanjayan, J.; Rajeev, P.; Cheema, D.S. Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment. Cem. Concr. Res. 2017, 100, 297–310. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Saha, S.; Rajasekaran, C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 2017, 146, 615–620. [Google Scholar] [CrossRef]
- Zhao, X.H.; Liu, C.Y.; Zuo, L.M.; Wang, L.; Zhu, Q.; Wang, M.K. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cem. Concr. Comp. 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Cwirzen, A.; Provis, J.L.; Penttala, V.; Habermehl-Cwirzen, K. The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr. Build. Mater. 2014, 66, 53–62. [Google Scholar] [CrossRef]
- Gorhan, G.; Kurklu, G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B-Eng. 2014, 58, 371–377. [Google Scholar] [CrossRef]
- Pavithra, P.; Reddy, M.S.; Dinakar, P.; Rao, B.H.; Satpathy, B.K.; Mohanty, A.N. A mix design procedure for geopolymer concrete with fly ash. J. Clean. Prod. 2016, 133, 117–125. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Fahim Huseien, G.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Abdulameer Hussein, A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renew. Sust. Energ. Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wang, H.Y.; Zhou, B.Y.; Gao, H.; Lin, Y.H. Resistance of Soda Residue-Fly Ash Based Geopolymer Mortar to Acid and Sulfate Environments. Materials 2021, 14, 785. [Google Scholar] [CrossRef] [PubMed]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative fly ash geopolymer-epoxy composites: Preparation, microstructure and mechanical properties. Materials 2016, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.H.; Liu, C.Y.; Zuo, L.M.; Wang, L.; Zhu, Q.; Liu, Y.; Zhou, B.Y. Synthesis and characterization of fly ash geopolymer paste for goaf backfill: Reuse of soda residue. J. Clean. Prod. 2020, 260, 121045. [Google Scholar] [CrossRef]
- Temuujin, J.; Williams, R.P.; van Riessen, A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process. Tech. 2009, 209, 5276–5280. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernandez-Jimenez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Zhao, X.H.; Liu, C.Y.; Wang, L.; Zuo, L.M.; Zhu, Q.; Ma, W. Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue. Cem. Concr. Comp. 2019, 98, 125–136. [Google Scholar] [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cem. Concr. Res. 2019, 122, 118–135. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.; He, X.; Yang, W.; Deng, X. Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials. Constr. Build. Mater. 2020, 249, 118763. [Google Scholar] [CrossRef]
- Lu, L.C.; Zhao, P.Q.; Wang, S.D.; Chen, Y.M. Effects of calcium carbide residue and high-silicon limestone on synthesis of belite-barium calcium sulphoaluminate cement. J. Inorg. Organomet. P. 2011, 21, 900–905. [Google Scholar] [CrossRef]
- GB 5085.7-2007. Identification Standard for Hazardous Wastes General Specifications. 2012. Available online: http://www.cssn.net.cn/app/home/productDetail/a62574985a9450c9e2238c7a7581a4ad (accessed on 25 April 2012). (In Chinese).
- Hao, C.W.; Deng, M.; Mo, L.W.; Liu, K.W. Surface modification of fly ashes with carbide slag and its effect on compressive strength and autogenous shrinkage of blended cement pastes. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 1149–1153. [Google Scholar] [CrossRef]
- Sun, H.F.; Li, Z.S.S.; Bai, J.; Memon, S.A.; Dong, B.Q.; Fang, Y.; Xu, W.T.; Xing, F. Properties of chemically combusted calcium carbide residue and its influence on cement properties. Materials 2015, 8, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Rattanashotinunt, C.; Thairit, P.; Tangchirapat, W.; Jaturapitakkul, C. Use of calcium carbide residue and bagasse ash mixtures as a new cementitious material in concrete. Mater. Design 2013, 46, 106–111. [Google Scholar] [CrossRef]
- Guo, W.C.; Wang, S.; Xu, Z.H.; Zhang, Z.Y.; Zhang, C.W.; Bai, Y.Y.; Zhao, Q.X. Mechanical performance and microstructure improvement of soda residue-carbide slag-ground granulated blast furnace slag binder by optimizing its preparation process and curing method. Constr. Build. Mater. 2021, 302, 124403. [Google Scholar] [CrossRef]
- Amnadnua, K.; Tangchirapat, W.; Jaturapitakkul, C. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Mater. Design. 2013, 51, 894–901. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Bai, Y.; Zhao, G.; Sang, Z.; Zhao, Q. Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Constr. Build. Mater. 2021, 291, 123367. [Google Scholar] [CrossRef]
- Chen, C.; Gong, W.L.; Lutze, W.; Pegg, I.L.; Zhai, J.P. Kinetics of fly ash leaching in strongly alkaline solutions. J. Mater. Sci. 2011, 46, 590–597. [Google Scholar] [CrossRef]
- GB/T 17671-1999. Method of Testing Cements—Determinationof Strength (Idt ISO 679: 1989). 1999. Available online: http://www.cssn.net.cn/cssn/front/4311243.html (accessed on 8 February 1999). (In Chinese).
- Lin, Y.; Xu, D.; Zhao, X. Effect of soda residue addition and its chemical composition on physical properties and hydration products of soda residue-activated slag cementitious materials. Materials 2020, 13, 1789. [Google Scholar] [CrossRef] [Green Version]
- GB/T 2419-2005. Test Method for Fluidity of Cement Mortar. 2005. Available online: http://www.cssn.net.cn/cssn/front/6824280.html (accessed on 19 January 2005). (In Chinese).
- GB/T 2542-2012. Test Methods for Wall Bricks. 2012. Available online: http://www.cssn.net.cn/cssn/front/81823523.html (accessed on 31 December 2012). (In Chinese).
- Wongsa, A.; Boonserm, K.; Waisurasingha, C.; Sata, V.; Chindaprasirt, P. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J. Clean. Prod. 2017, 148, 49–59. [Google Scholar] [CrossRef]
- JC/T 603-2004. Standard Test Method for Drying Shrinkage of Mortar. 2004. Available online: http://www.cssn.net.cn/app/home/productDetail/a8105c02d10d9a7a92a9fef608f6879d (accessed on 20 October 2004). (In Chinese).
- Wang, H.; Zhao, X.; Zhou, B.; Lin, Y.; Gao, H. Performance Optimization and Characterization of Soda Residue-Fly Ash Geopolymer Paste for Goaf Backfill: Beta-Hemihydrate Gypsum Alternative to Sodium Silicate. Materials 2020, 13, 5604. [Google Scholar] [CrossRef]
- Shang, J.; Dai, J.G.; Zhao, T.J.; Guo, S.Y.; Zhang, P.; Mu, B. Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. J. Clean. Prod. 2018, 203, 746–756. [Google Scholar] [CrossRef]
- Zhao, X.H.; Liu, C.Y.; Zuo, L.M.; Zhu, Q.; Ma, W.; Liu, Y.C. Preparation and characterization of press-formed fly ash cement incorporating soda residue. Mater. Lett. 2020, 259, 126852. [Google Scholar] [CrossRef]
Compositions | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Others | Loss on Ignition (1000 °C) |
---|---|---|---|---|---|---|---|
CS | 63.13% | 8.70% | 0.50% | 1.03% | 1.20% | — | 25.44% |
FA | 5.42% | 51.10% | 25.20% | 7.92% | — | 7.36% | 3.00% |
Raw Powders | Specific Gravity | Specific Surface Area (m2/kg) | Amount Passing #325 Sieve | Mean Particle Size (mm) | pH 1 |
---|---|---|---|---|---|
CS | 1.80 | 420 | 40.00% | 0.22 | 10.55 |
FA | 2.45 | 500 | 73.00% | 0.10 | 6.93 |
No. | FA (g) | CS (g) | CS Content 1 (%) | L/S 2 | C/S 3 | Na/Si Ratio | Al/Si Ratio | Ca/Si Ratio | Pre-Curing Temperature |
---|---|---|---|---|---|---|---|---|---|
FC0T25 | 450.0 | 0.0 | 0.0 | 0.73 | 1:3 | 0.74 | 0.29 | 0.11 | T25 |
FC4.4T25 | 430.2 | 19.8 | 4.4 | 0.73 | 1:3 | 0.76 | 0.29 | 0.17 | T25 |
FC8.8T25 | 410.4 | 39.6 | 8.8 | 0.73 | 1:3 | 0.79 | 0.29 | 0.24 | T25 |
FC13.2T25 | 390.6 | 59.4 | 13.2 | 0.73 | 1:3 | 0.83 | 0.28 | 0.31 | T25 |
FC17.6T25 | 370.8 | 79.2 | 17.6 | 0.73 | 1:3 | 0.86 | 0.28 | 0.38 | T25 |
FC20T25 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T25 |
FC20T40 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T40 |
FC20T50 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T50 |
FC20T60 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T60 |
FC20T70 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T70 |
FC20T80 | 360.0 | 90.0 | 20.0 | 0.73 | 1:3 | 0.88 | 0.28 | 0.43 | T80 |
No. | FA (g) | CS (g) | CS Content 1 (%) | L/S 2 | C/S 3 | Na/Si Ratio | Al/Si Ratio | Ca/Si Ratio | Curing Temperatures |
---|---|---|---|---|---|---|---|---|---|
FC0T25 | 450.0 | 0.0 | 0.0 | 0.73 | 1:2 | 0.74 | 0.29 | 0.11 | T25 |
FC8.8T25 | 410.4 | 39.6 | 8.8 | 0.73 | 1:2 | 0.79 | 0.29 | 0.24 | T25 |
FC20T25 | 360.0 | 90.0 | 20.0 | 0.73 | 1:2 | 0.88 | 0.28 | 0.43 | T25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, H.; Jiang, L.; Meng, L.; Zhou, B.; Zhang, J. Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag. Materials 2021, 14, 6692. https://doi.org/10.3390/ma14216692
Zhao X, Wang H, Jiang L, Meng L, Zhou B, Zhang J. Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag. Materials. 2021; 14(21):6692. https://doi.org/10.3390/ma14216692
Chicago/Turabian StyleZhao, Xianhui, Haoyu Wang, Linlin Jiang, Lingchao Meng, Boyu Zhou, and Jiashuo Zhang. 2021. "Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag" Materials 14, no. 21: 6692. https://doi.org/10.3390/ma14216692
APA StyleZhao, X., Wang, H., Jiang, L., Meng, L., Zhou, B., & Zhang, J. (2021). Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag. Materials, 14(21), 6692. https://doi.org/10.3390/ma14216692