New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahalingam, V.; Thirumalai, J.; Krishnan, R.; Chandramohan, R. Controlled synthesis and luminescence properties of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition. Electron. Mater. Lett. 2016, 12, 32–47. [Google Scholar] [CrossRef]
- Lim, C.S.; Atuchin, V.V.; Aleksandrovsky, A.S.; Molokeev, M.S.; Oreshonkov, A.S. Incommensurately modulated structure and spectroscopic properties of CaGd2(MoO4)4: Ho3+/Yb3+ phosphors for up-conversion applications. J. Alloys Compd. 2016, 695, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Tranquilin, R.L.; Oliveira, M.C.; Santiago, A.A.G.; Lovisa, L.X.; Ribeiro, R.A.P.; Longo, E.; de Lazaro, S.R.; Almeida, C.R.R.; Paskocimas, C.A.; Motta, F.V.; et al. Presence of excited electronic states on terbium incorporation in CaMoO4: Insights from experimental synthesis and first-principles calculations. J. Phys. Chem Solids. 2021, 149, 109790. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.H.; Yan, B. Self-assembled RE2(MO4)3: Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Yb/Er, Yb/Tm) hierarchical microcrystals: Hydrothermal synthesis and up-conversion luminescence. Opt Mater. 2014, 36, 602–607. [Google Scholar] [CrossRef]
- Lim, C.S. Microwave Sol-Gel Derived NaGd (MoO4)2: Ho3+/Yb3+ Phosphors and Their Upconversion Photoluminescence Properties. Trans. Electr. Electron. Mater. 2017, 18, 364–369. [Google Scholar]
- Xia, M.; Ju, Z.; Yang, H.; Wang, Z.; Gao, X.; Pan, F.; Liu, W. Red-emitting enhancement by inducing lower crystal field symmetry of Eu3+ site in CaWO4: Eu3+ phosphor for n-UV w-LEDs. J. Alloys Compd. 2018, 739, 439–446. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Yang, S.; Wang, R.; Na, L.; Hua, R. Synthesis and photoluminescent features of Eu3+-doped NaGd (WO4)2 nanophosphors. Mater. Res. Bull. 2020, 122, 110689. [Google Scholar] [CrossRef]
- Teymouri, E.; Alemi, A.; Aghdam sharabiyani, M.A.; Sadeghi, L.; Necefoğlu, H. Synthesizes and characterization of new double tungstate NaRE(WO4)2 (RE= Pr3+, Ho 3+, Sm3+). Mater. Chem. Phys. 2020, 240, 122173. [Google Scholar] [CrossRef]
- Cavalli, E.; Boutinaud, P.; Grinberg, M. Luminescence dynamics in CaWO4:Pr3+ powders and single crystals. J. Lumin. 2016, 169, 450–453. [Google Scholar] [CrossRef]
- Kubus, M.; Kłonowski, A.M.; Lotnyk, A.; Kienle, L. Luminescence enhancement in composite material: CaWO4:Tb3+ nanocrystals incorporated into silica xerogel. Mater. Chem. Phys. 2015, 150, 424–429. [Google Scholar] [CrossRef]
- Dudnikova, V.B.; Zharikov, E.V.; Eremin, N.N. Local structure of molybdates solid solutions containing europium by results of atomistic simulation. Mater. Today Commun. 2020, 23, 101180. [Google Scholar] [CrossRef]
- Subbotin, K.A.; Titov, A.I.; Lis, D.A.; Smirnov, V.A.; Alimov, O.K.; Zharikov, E.V.; Shcherbakov, I.A. Downconversion properties of Yb-doped scheelitelike molybdate and tungstate single crystals. In Proceedings of the International Conference Laser Optics (ICLO), St. Petersburg, Russia, 4–8 June 2018; p. 331. [Google Scholar] [CrossRef]
- You, C.Y.; Colon, C.; Fernandez-Martinez, F.; De Andre-Garcia, I. Synthesis and characterization of a Ce3+ trivalent scheelite-type double tungstate by solid state method. J. Alloys Compd. 2017, 694, 345–353. [Google Scholar] [CrossRef]
- Culver, S.P.; Brutchey, R.L. Lanthanide-activated scheelite nanocrystal phosphors prepared by the low-temperature vapor diffusion sol-gel method. Dalt. Trans. 2016, 45, 18069–18073. [Google Scholar] [CrossRef] [PubMed]
- Nadaraia, L.; Jalabadze, N.; Chedia, R.; Antadze, M.; Khundadze, L. Preparation of Tungstate nanopowders by Sol-Gel method. IEEE Trans. Nucl. Sci. 2010, 57, 1370–1376. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wang, Y.; Wang, X.; Han, G. Shape-controlled of CaWO4 microcrystals by self-assembly of nanocrystals via a simple sonochemical method. Adv. Powder Technol. 2013, 24, 721–726. [Google Scholar] [CrossRef]
- De Sousa, P.B.; Gouveia, A.F.; Sczancoski, J.C.; Nogueira, I.C.; Longo, E.; San-Miguel, M.A.; Cavalcante, L.S. Electronic structure, optical and sonophotocatalytic properties of spindle-like CaWO4 microcrystals synthesized by the sonochemical method. J. Alloys Compd. 2021, 855, 157377. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, Y.; Liu, H.; Guo, X.; Tang, H.; Yin, W.; Gao, Y. Hydrothermal synthesis of NaLa (WO4)2: Eu3+ octahedrons and tunable luminescence by changing Eu3+ concentration and excitation wavelength. J. Mater. Sci Mater. Electron. 2017, 28, 1301–1306. [Google Scholar] [CrossRef]
- Czajka, J.; Szczeszak, A.; Lis, S. Up-converting nanophosphors based on Yb3+/Ho3+ doped NaM (WO4)2 (M = Gd, Y) synthesized in situ under hydrothermal conditions. Opt Mater. 2020, 107, 109979. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, B.; Zhang, J.; Li, X.; Sun, J.; Zheng, H.; Wu, Z.; Zhong, H.; Yu, H.; Xia, H. Microwave-assisted hydrothermal synthesis and laser-induced optical heating effect of NaY (WO4)2: Tm3+/Yb3+ microstructures. Opt. Mater. Express. 2014, 4, 1966–1980. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, B.; Yu, H.; Zhang, J.; Sun, J.; Li, X.; Sun, M.; Tian, B.; Fu, S.; Zhong, H.; et al. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+doped NaY (WO4)2 microstructures. J. Colloid. Interface Sci. 2014, 420, 27–34. [Google Scholar] [CrossRef]
- Czajka, J.; Piskuła, Z.; Szczeszak, A.; Lis, S. Structural, morphology and luminescence properties of mixed calcium molybdate-tungstate microcrystals doped with Eu3+ ions and changes of the color emission chromaticity. Opt Mater. 2018, 84, 422–426. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, L.; Wang, H.; Zhu, C.; Pang, R.; Feng, J.; Li, D.; Liu, G.; Jiang, L.; Li, C. Structure and luminescence properties of CaWO4-EuMO4 (M=Nb, Ta) solid solution. J. Lumin. 2019, 211, 183–192. [Google Scholar] [CrossRef]
- Huang, X.; Li, B.; Guo, H.; Chen, D. Molybdenum-doping-induced photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting phosphors for white light-emitting diodes. Dye Pigment. 2017, 143, 86–94. [Google Scholar] [CrossRef]
- Wang, H.; Yang, T.; Feng, L.; Ning, Z.; Liu, M.; Lai, X.; Gao, D.; Bi, J. Energy Transfer and Multicolor Tunable Luminescence Properties of NaGd0.5Tb0.5−xEux (MoO4)2 Phosphors for UV-LED. J. Electron. Mater. 2018, 47, 6494–6506. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Grossman, V.G.; Adichtchev, S.V.; Surovtsev, N.V.; Gavrilova, T.A.; Bazarov, B.G. Structural and vibrational properties of microcrystalline TlM (MoO4)2 (M = Nd, Pr) molybdates. Opt. Mater. 2012, 34, 812–816. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, F.; Yu, L.; Xu, H.; Liu, G.; Dong, X.; Yu, W.; Wu, J. Construction, energy transfer, tunable multicolor and luminescence enhancement of YF3:RE3+ (RE=Eu, Tb)/carbon dots nanocomposites. J. Lumin. 2020, 221, 117072. [Google Scholar] [CrossRef]
- Kataria, V.; Mehta, D.S. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. J. Rare Earths 2021. [Google Scholar] [CrossRef]
- Sarkar, J.; Mondal, S.; Panja, S.; Dey, I.; Sarkar, A.; Ghorai, U.K. Multicolour tuning and perfect white emission from novel PbWO4:Yb3+: Ho3+: Tm3+ nanophosphor. Mater. Res. Bull. 2019, 112, 314–322. [Google Scholar] [CrossRef]
- Sun, Z.; Jiang, L.; Xu, X.; Li, J.; Chen, X.; Chen, H. Synthesis and Luminescence Properties of Ho3+ and Er3+-Doped CaWO4 Nanocrystalline Powders Prepared by Self-Propagating Combustion Method. J. Fluoresc. 2020, 30, 389–396. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, H.; Wang, Q.; Luo, L.; Gong, M. Luminescent properties of Tb3+ activated double molybdates and tungstates. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2009, 164, 120–123. [Google Scholar] [CrossRef]
- Bawane, U.A.; Kadam, A.R.; Nande, A.; Dhoble, S.J. Critical review on lanthanide activated LED phosphors. J. Phys. Conf. Ser. 2021, 1913, 012030. [Google Scholar] [CrossRef]
- Song, F. Synthesis and photoluminescence of new Eu3+-activated Cs2Ba (MoO4)2 red-emitting phosphors with high color purity for white LEDs. J. Lumin. 2020, 239, 118324. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Liu, Y. Luminescence investigation of a novel red-emitting Sr3NaSbO6: Eu3+ phosphor. Optik 2021, 242, 166809. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Yi, S.; Fang, Z.X.; Lu, J.; Hu, Z.; Zhao, W.; Wang, Y. Research on a new type of near-infrared phosphor Li2MgZrO4:Cr3+- synthesis, crystal structure, photoluminescence and thermal stability. Opt. Mater. 2021, 117, 111209. [Google Scholar] [CrossRef]
- Rodríguez-García, M.M.; Ciric, A.; Ristic, Z.; Williams, J.A.G.; Dramićanin, M.D.; Evans, I.R. Narrow-band red phosphors of high colour purity based on Eu3+-activated apatite-type Gd9.33 (SiO4) 6O2. J. Mater. Chem. C. 2021, 9, 7474. [Google Scholar] [CrossRef]
- Sahu, M.; Phatak, N.; Saxena, M.K. Exploring color tunable emission characteristics of Eu3+-doped La2 (MoO4)3 phosphors in the glass–ceramic form. RSC Adv. 2021, 11, 17488. [Google Scholar] [CrossRef]
- Perera, S.S.; Munasinghe, H.N.; Yatooma, E.N.; Rabuffe, F.A. Microwave-assisted solid-state synthesis of NaRE (MO4)2 phosphors (RE = La, Pr, Eu, Dy; M = Mo, W). Dalton Trans. 2020, 49, 7914–7919. [Google Scholar] [CrossRef]
- Bin, J.; Liu, H.; Mei, L.; Liang, L.; Gao, H.; Li, H.; Liao, L. Multi-color Luminescence Evolution and Efficient Energy Transfer of Scheelite-type LiCaGd (WO4)3: Ln3+ (Ln = Eu, Dy, Tb) Phosphors. Ceram. Int. 2019, 45, 1837–1845. [Google Scholar] [CrossRef]
- Guo, X.; Song, S.; Jiang, X.; Cui, J.; Li, Y.; Lv, W.; Liu, H.; Han, Y.; Wang, L. Functional applications and luminescence properties of emission tunable phosphors CaMoO4@SiO2:Ln3+ (Ln=Eu, Tb, Dy). J. Alloys Compd. 2021, 857, 157515. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, T.; Jiang, J.; Geng, H.; Ning, Z.; Lai, X.; Bi, J.; Gao, D. Multicolor Tunable Luminescence Based on Tb3+/Eu3+ Doping through a Facile Hydrothermal Route. ACS Appl. Mater. Interfaces 2017, 9, 26184–26190. [Google Scholar] [CrossRef]
- Vijayalakshmi, L.; Kumar, K.N.; Hwang, P. Tailoring ultraviolet-green to white light via energy transfer from Tb3+–Eu3+ codoped glasses for white light-emitting diodes. Scr. Mater. 2020, 187, 97–102. [Google Scholar] [CrossRef]
- McCamy, C.S. Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Zhang, Y.; Li, Y.; Yao, X. Winning wide-temperature-range and high-sensitive thermometry by a multichannel strategy of dual-lanthanides in the new tungstate phosphors. J. Alloys Compd. 2020, 834, 154998. [Google Scholar] [CrossRef]
- Gürmen, E.; Daniels, E.; King, J.S. Crystal Structure Refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by Neutron Diffraction. J. Chem. Phys. 1971, 55, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Piskuła, Z.; Staninski, K.; Lis, S. Luminescence properties of Tm3+/Yb3+, Er3+/Yb3+ and Ho3+/Yb3+ activated calcium tungstate. J. Rare Earths. 2011, 29, 1166–1169. [Google Scholar] [CrossRef]
- Li, S.; Wei, X.; Deng, K.; Tian, X.; Qin, Y.; Chen, Y.; Yin, M. A new red-emitting phosphor of Eu3+-doped Sr2MgMoxW1-xO6 for solid state lighting. Curr. Appl. Phys. 2013, 13, 1288–1291. [Google Scholar] [CrossRef]
- Jiang, H.-X.; Lű, S.-C. White light emission and bidirectional energy transfer in a Eu3+/Tb3+ co-doped NaLa (WO4)2. Mater. Res. Bull. 2020, 135, 11123. [Google Scholar] [CrossRef]
- Martínez-Domingo, M.Á.; Melgosa, M.; Okajima, K.; Medina, V.J.; Collado-Montero, F.J. Spectral Image Processing for Museum Lighting Using CIE LED Illuminants. Sensors 2019, 19, 5400. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajka, J.; Szczeszak, A.; Kaczorowska, N.; Lis, S. New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components. Materials 2021, 14, 6608. https://doi.org/10.3390/ma14216608
Czajka J, Szczeszak A, Kaczorowska N, Lis S. New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components. Materials. 2021; 14(21):6608. https://doi.org/10.3390/ma14216608
Chicago/Turabian StyleCzajka, Justyna, Agata Szczeszak, Nina Kaczorowska, and Stefan Lis. 2021. "New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components" Materials 14, no. 21: 6608. https://doi.org/10.3390/ma14216608
APA StyleCzajka, J., Szczeszak, A., Kaczorowska, N., & Lis, S. (2021). New Multicolor Tungstate-Molybdate Microphosphors as an Alternative to LED Components. Materials, 14(21), 6608. https://doi.org/10.3390/ma14216608