Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze–Thaw Cycle Based on Generalized Plasticity Theory
Abstract
:1. Introduction
2. An Elastoplastic Model Framework for Saturated Soils in Generalized Plasticity Theory Incorporating the Effects of the Freeze–Thaw Cycle
2.1. Elastic Deformations
2.2. Yield Surfaces and Plastic Potential Functions
2.3. Elastoplastic Stress–Strain Relations
3. Determination of Parameters and Model Validation
3.1. Elastic Parameters
3.2. Parameters Related to a Compressive Mechanism
3.3. Parameters Related to a Shear Mechanism
3.4. Model Validation
4. Future Fields of Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Framework of Generalized Plasticity Theory
References
- Tang, L.; Kong, X.; Li, S.; Ling, X.; Ye, Y.; Tian, S. A preliminary investigation of vibration mitigation technique for the high-speed railway in seasonally frozen regions. Soil Dyn. Earthq. Eng. 2019, 127, 105841. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Tian, Y. Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze–thaw cycles. Cold Reg. Sci. Technol. 2010, 61, 29–33. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, D.; Zhao, G.; Niu, F.; He, Z. Analysis of frost heave mechanisms in a high-speed railway embankment. Can. Geotech. J. 2016, 53, 520–529. [Google Scholar] [CrossRef]
- Hu, T.; Liu, D.W.; Wu, H. Experimental testing and numerical modelling of mechanical behaviors of silty clay under freez-ing-thawing cycles. Math. Probl. Eng. 2020, 2020, 1–13. [Google Scholar]
- Aubert, J.; Gasc-Barbier, M. Hardening of clayey soil blocks during freezing and thawing cycles. Appl. Clay Sci. 2012, 65–66, 1–5. [Google Scholar] [CrossRef]
- Al-Omari, A.; Beck, K.; Brunetaud, X.; Ákos, T.; Al-Mukhtar, M. Critical degree of saturation: A control factor of freeze-thaw damage of porous limestones at Castle of Chambord, France. Eng. Geol. 2015, 185, 71–80. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Kalıpcılar, I.; Sezer, G.I.; Sezer, A.; Altun, S. Freeze-thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack. Appl. Clay Sci. 2015, 115, 179–188. [Google Scholar] [CrossRef]
- Liu, J.; Chang, D.; Yu, Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Weng, L.; Wang, L.; Li, Z.; Xu, L. Fractal analysis of cracking in a clayey soil under freeze–thaw cycles. Eng. Geol. 2016, 208, 93–99. [Google Scholar] [CrossRef]
- Consoli, N.C.; Da Silva, K.; Filho, S.; Rivoire, A.B. Compacted clay-industrial wastes blends: Long term performance under extreme freeze-thaw and wet-dry conditions. Appl. Clay Sci. 2017, 146, 404–410. [Google Scholar] [CrossRef]
- Tang, L.; Cong, S.; Ling, X.; Xing, W.; Nie, Z. A unified formulation of stress-strain relations considering micro-damage for expansive soils exposed to freeze-thaw cycles. Cold Reg. Sci. Technol. 2018, 153, 164–171. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Lan, W.; Wang, S. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling. Cold Reg. Sci. Technol. 2019, 164, 102779. [Google Scholar] [CrossRef]
- Liu, J.J.; Zha, F.S.; Xu, L.; Kang, B.; Yang, C.B.; Zhang, W.; Zhang, J.W.; Liu, Z.H. Zinc leachability in contaminated soil stabi-lized/solidified by cement-soda residue under freeze-thaw cycles. Appl. Clay Sci. 2020, 186, 105474. [Google Scholar] [CrossRef]
- Xiang, D. Study on the Failure Mechanism and Control Technology of Deep Cutting Slope Located on High-Cold Area. Master Thesis, Southwest Jiaotong University, Chengdu, China, 2017. [Google Scholar]
- Diel, J.; Vogel, H.-J.; Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 2019, 345, 63–71. [Google Scholar] [CrossRef]
- Zhao, N.F.; Ye, W.M.; Chen, B.; Chen, Y.G.; Cui, Y.J. Modeling of the swelling–shrinkage behavior of expansive clays during wetting–drying cycles. Acta Geotech. 2018, 14, 1325–1335. [Google Scholar] [CrossRef]
- Evolution of fissures and bivariate-bimodal soil-water characteristic curves of expansive soil under drying-wetting cycles. Chin. J. Geotech. Eng. 2021, 43, 58–63.
- Li, W.; Zeng, S.; Zhao, J.; Liu, P. Damage characteristics of Changsha ring expressway silty clay during dry-wet cycle. J. Cent. South Univ. 2017, 48, 1360–1366. [Google Scholar]
- Hao, Y.Z.; Wang, T.H.; Cheng, L.; Jin, X. Structural constitutive relation of compacted loess considering the effect of drying and wetting cycles. Rock Soil Mech. 2021, 42, 1–10. [Google Scholar]
- Li, J.; Yin, Z.Y.; Cui, Y.J.; Liu, K.; Yin, J.H. An elasto-plastic model of unsaturated soil with an explicit degree of satura-tion-dependent CSL. Eng. Geol. 2019, 260, 105240. [Google Scholar] [CrossRef]
- Li, W.; Yang, Q. Hydromechanical Constitutive Model for Unsaturated Soils with Different Overconsolidation Ratios. Int. J. Géoméch. 2018, 18, 04017142. [Google Scholar] [CrossRef]
- Guo, N.; Chen, Z.H.; Yang, X.H.; Guo, J.F. Incremental nonlinear constitutive model and parameter variation of transversely isotropic unsaturated soil. Chin. J. Geotech. Eng. 2021. [Google Scholar]
- Li, X.X.; Li, T.; Peng, L.Y. Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction. Rock Soil Mech. 2020, 41, 552–560. [Google Scholar]
- Hu, T.F.; Liu, J.K.; Wang, T.L.; Yue, Z.R. Effect of freeze-thaw cycles on the deformation characteristics of a silty clay and its constitutive model with double yielding surfaces. Rock Soil Mech. 2018, 40, 1–11. [Google Scholar]
- Zhang, X.D.; Ren, K.; Zhang, H.D.; Xing, Y.D.; Yang, J.J. Constitutive relationship with double yield surfaces for cinder im-proved soil under freeze-thaw cycles. Chin. J. Rock Mech. Eng. 2018, 37, 1916–1923. [Google Scholar]
- Kong, L.; Zheng, Y.R.; Wang, Y.C. A three-yield surface model for soilmasses based on the generalized plastic mechanics. Rock Soil Mech. 2000, 21, 108–112. [Google Scholar]
- Zheng, Y.R. New development of geotechnical plastic mechanics-generalized plastic mechanics. Chin. J. Geotech. Eng. 2003, 25, 1–10. [Google Scholar]
- Lai, Y.M.; Yang, Y.G.; Chang, X.X.; Li, S.Y. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics. Int. J. Plasticity 2010, 26, 1461–1484. [Google Scholar]
- Sa´nchez, M.; Gens, A.; Guimaraes, L.J.; Olivella, S. A double structure generalized plasticity model for expansive materials. Int. J. Numer. Anal. Met. Geomech. 2005, 29, 751–787. [Google Scholar] [CrossRef]
- Salim, W.; Indraratna, B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle break-age. Can. Geotech. J. 2004, 41, 657–671. [Google Scholar] [CrossRef]
- Yin, Z.Z. Stress-strain model of soils with double-yield surfaces. Chin. J. Geotech. Eng. 1988, 10, 64–71. [Google Scholar]
- Lu, Z.H.; Chen, Z.H. An elastoplastic damage constitutive model of unsaturated undisturbed expansive soil. Chin. J. Geotech. Eng. 2003, 25, 422–426. [Google Scholar]
- Cai, X.; Yang, J.; Guo, X.W.; Wu, Y.L. Elastoplastic constitutive model for cement-sand-gravel material. Chin. J. Geotech. Eng. 2016, 380, 1569–1577. [Google Scholar]
- Alonso, E.; Vaunat, J.; Gens, A. Modelling the mechanical behaviour of expansive clays. Eng. Geol. 1999, 54, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhou, A. Non-isothermal unified hardening model: A thermo-elasto-plastic model for clays. Géotechnique 2013, 63, 1328–1345. [Google Scholar] [CrossRef]
- Cui, H.H.; Liu, J.K.; Zhang, L.Q.; Tian, Y.H. A constitutive model of subgrade in a seasonally frozen area with considering freeze-thaw cycles. Rock Soil Mech. 2015, 36, 2228–2236. [Google Scholar]
- Wen, C.P.; Wang, J.J. Study on the stress-strain characteristics of bioenzyme-treated expansive soil based on Shen Zhujiang′s double yield surfaces elasto-plastic model. Chin. J. Rock Mech. Eng. 2018, 37, 1011–1019. [Google Scholar]
Parameters | Values | ||
---|---|---|---|
σc = 100 kPa | σc = 200 kPa | σc = 300 kPa | |
Shear modulus, G (kPa) | 2223 | 3359 | 4668 |
Bulk modulus, K (kPa) | 4816 | 7280 | 10,114 |
Slope of failure line, M | 1.0 | ||
Shear yield surface index, M2 | 1.04 | ||
Intercept of the failure line on the p axis, pr | 42 | ||
Elastoplastic dilation index, a | 0.23 | ||
Poisson’s ratio, v | 0.3 |
Parameters | Values | ||
---|---|---|---|
σc = 100 kPa | σc = 200 kPa | σc = 300 kPa | |
Shear modulus, G (kPa) | 1990 | 3108 | 4617 |
Bulk modulus, K (kPa) | 4312 | 6734 | 10,003.5 |
Slope of failure line, M | 0.98 | ||
Shear yield surface index, M2 | 1.02 | ||
Intercept of the failure line on the p axis, pr | 38 | ||
Elastoplastic dilation index, a | 0.23 | ||
Poisson’s ratio, v | 0.3 |
Parameters | Values | ||
---|---|---|---|
σc = 100 kPa | σc = 200 kPa | σc = 300 kPa | |
Shear modulus, G (kPa) | 3901 | 11,194 | 18,867 |
Bulk modulus, K (kPa) | 8452 | 24,253 | 40,879 |
Slope of failure line, M | 1.6 | ||
Loading–collapse (LC) yield surface index, M1 | 1.7 | ||
Shear yield surface index, M2 | 1.71 | ||
Intercept of the failure line on the p axis, pr | 22.9 | ||
Elastoplastic compression index, χ1 | 303.8 | ||
Elastoplastic compression index, χ2 | 25.8 | ||
Elastoplastic dilation index, a | 0.23 | ||
Poisson’s ratio, v | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, S.; Ling, X.; Li, X.; Geng, L.; Xing, W.; Li, G. Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze–Thaw Cycle Based on Generalized Plasticity Theory. Materials 2021, 14, 6485. https://doi.org/10.3390/ma14216485
Cong S, Ling X, Li X, Geng L, Xing W, Li G. Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze–Thaw Cycle Based on Generalized Plasticity Theory. Materials. 2021; 14(21):6485. https://doi.org/10.3390/ma14216485
Chicago/Turabian StyleCong, Shengyi, Xianzhang Ling, Xinyu Li, Lin Geng, Wenqiang Xing, and Guoyu Li. 2021. "Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze–Thaw Cycle Based on Generalized Plasticity Theory" Materials 14, no. 21: 6485. https://doi.org/10.3390/ma14216485
APA StyleCong, S., Ling, X., Li, X., Geng, L., Xing, W., & Li, G. (2021). Elastoplastic Model Framework for Saturated Soils Subjected to a Freeze–Thaw Cycle Based on Generalized Plasticity Theory. Materials, 14(21), 6485. https://doi.org/10.3390/ma14216485