On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Production
2.2. Microstructural Characterisation
2.3. Microstructure Mechanical Properties Characterisation
3. Results and Discussion
3.1. Microstructure and Identification of Intermetallic Phases
3.2. Microstructure Mechanical Properties
4. Conclusions
- The addition of La and Ce formed the α-Al15(Fe,Mn)3Si2, Al20(La,Ce)Ti2, and Al11(La,Ce)3 phases, and the transitions metals were dissolved in these intermetallic phases.
- The hardness and elastic modulus of the phases of Al11(La, Ce)3 are 2.8 ± 0.6 GPa and 124.3 ± 27.4 GPa, respectively; Al20(Ce,La)Ti2 has hardness 6.78 ± 0.78 GPa and elastic modulus 148.1 ± 13.6 GPa; the α-Al15(Fe,Mn)3Si2 phase has hardness 8.44 ± 3.04 GPa and elastic modulus 158.0 ± 32.8 GPa; π-Al8FeMg3Si6 has hardness 2.1 ± 0.6 GPa and elastic modulus 111.0 ± 44.0 GPa.
- Based on the rule-of-mixture, the calculate elastic modulus of the matrix alloys C0 and C1 are 87.7–90.5 GPa and 93.4–105.1 GPa.
- Based on the Halpin–Tsai model for particle-reinforced composites, the calculated elastic modulus ranges of C0 and C1 composite materials are 111.0–113.9 GPa and 120.9–133.1 GPa, respectively. The SiC particles increased the elastic modulus of the matrix by 10–15% in both composite materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortensen, A.; Jin, I. Solidification processing of metal matrix composites. Int. Mater. Rev. 1992, 37, 101–128. [Google Scholar] [CrossRef]
- Levaillant, C.; Suéry, M. The semi-solid processing of alloys and composites. JOM 1990, 42, 26. [Google Scholar] [CrossRef]
- Nguyen, T.; Suéry, M.; Favier, D. Influence of SiC particle volume fraction on the compressive behaviour of partially remelted AlSi-based composites. Mater. Sci. Eng. A 1994, 183, 157–167. [Google Scholar] [CrossRef]
- Thanh, L.N.; Suéry, M. Compressive behaviour of partially remelted A356 alloys reinforced with SiC particles. Mater. Sci. Technol. 1994, 10, 894–902. [Google Scholar] [CrossRef]
- Thomas, A.; Zervos, N.; Ekelund, A.; Awe, S.A. Simulation study on the thermomechanical behaviour of Al-MMC automotive brake discs. Eurobrake 2019, 2019, 1–12. [Google Scholar]
- Awe, S.A. Developing material requirements for automotive brake disc. Mod. Concepts Mater. Sci. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- D’Errico, F.; Casari, D.; Alemani, M.; Perricone, G.; Tosto, M. Industrial semisolid casting process for secondary aluminium alloys for decarbonising lightweight parts in automotive sector. MATEC Web Conf. 2020, 326, 06007. [Google Scholar] [CrossRef]
- Serrenho, A.C.; Norman, J.; Allwood, J.M. The impact of reducing car weight on global emissions: The future fleet in Great Britain. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160364. [Google Scholar] [CrossRef] [Green Version]
- Kenworthy, J.R. Transport energy use and greenhouse gases in urban passenger transport systems: A study of 84 global cities. In Proceedings of the International Sustainability Conference, Fremantle, Australia, 17–19 September 2003. [Google Scholar]
- Xia, F.; Gao, X.; Liang, M.; Guo, Y.; Li, J.; Yang, Z.; Wang, J.; Zhang, L. Effect of thermal exposure on microstructure and high-temperature fatigue life of Al-Si piston alloys. J. Mater. Res. Technol. 2020, 9, 12926–12935. [Google Scholar] [CrossRef]
- Zuo, L.; Ye, B.; Feng, J.; Xu, X.; Kong, X.Y.; Jiang, H. Effect of δ-Al3CuNi phase and thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni alloys. J. Alloys Compd. 2019, 791, 1015–1024. [Google Scholar] [CrossRef]
- Zamani, M.; Morini, L.; Ceschini, L.; Seifeddine, S. The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys. Mater. Sci. Eng. A 2017, 693, 42–50. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zuo, L.-J.; Feng, J.; Ye, B.; Kong, X.-Y.; Jiang, H.-Y.; Ding, W.-J. Effect of thermal exposure on microstructure and mechanical properties of Al−Si−Cu−Ni−Mg alloy produced by different casting technologies. Trans. Nonferrous Met. Soc. China 2020, 30, 1717–1730. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Mao, F.; Feng, J.; Zhang, Y.; Kang, Y. Effect of cooling rate on eutectic Si in Al-7.0Si-0.3Mg alloys modified by La additions. J. Alloys Compd. 2020, 826, 154206. [Google Scholar] [CrossRef]
- Gursoy, O.; Timelli, G. Lanthanides: A focused review of eutectic modification in hypoeutectic Al–Si alloys. J. Mater. Res. Technol. 2020, 9, 8652–8666. [Google Scholar] [CrossRef]
- Du, A.; Jarfors, A.; Zheng, J.; Wang, K.; Yu, G. The Influence of La and Ce on Microstructure and Mechanical Properties of an Al-Si-Cu-Mg-Fe Alloy at High Temperature. Metals 2021, 11, 384. [Google Scholar] [CrossRef]
- Zhao, B.; Zhan, Y.; Tang, H. High-temperature properties and microstructural evolution of Al–Cu–Mn-RE (La/Ce) alloy designed through thermodynamic calculation. Mater. Sci. Eng. A 2019, 758, 7–18. [Google Scholar] [CrossRef]
- Sims, Z.C.; Rios, O.R.; Weiss, D.; Turchi, P.E.A.; Perron, A.; Lee, J.R.I.; Li, T.T.; Hammons, J.A.; Bagge-Hansen, M.; Willey, T.M.; et al. High performance aluminum–cerium alloys for high-temperature applications. Mater. Horiz. 2017, 4, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Aghaie, E. Effect of Cerium Addition on Improvement of Mechanical Properties of B319 Powertrain Aluminum Alloy. Master’s Thesis, University of British Columbia, Kelowna, BC, Canada, 2019. [Google Scholar]
- Elgallad, E.M.; Ibrahim, M.F.; Doty, H.W.; Samuel, F.H. Microstructural characterisation of Al–Si cast alloys containing rare earth additions. Philos. Mag. 2018, 98, 1337–1359. [Google Scholar] [CrossRef]
- Liao, H.-C.; Xu, H.-T.; Hu, Y.-Y. Effect of RE addition on solidification process and high-temperature strength of Al−12% Si−4% Cu−1.6% Mn heat-resistant alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1117–1126. [Google Scholar] [CrossRef]
- Hu, B.; Quan, B.; Li, D.; Wang, X.; Li, Z.; Zeng, X. Solid solution strengthening mechanism in high pressure die casting Al–Ce–Mg alloys. Mater. Sci. Eng. A 2021, 812, 141109. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Xu, S.; Nagaumi, H.; Li, X. Improvement of mechanical properties in micro-alloying Al-Si-Mg-Zn cast alloy. Mater. Lett. 2021, 283, 128810. [Google Scholar] [CrossRef]
- Jarfors, A.E.; Du, A.; Yu, G.; Zheng, J.; Wang, K. On the sustainable choice of alloying elements for strength of aluminum-based alloys. Sustainability 2020, 12, 1059. [Google Scholar] [CrossRef] [Green Version]
- Oladijo, O.P.; Awe, S.A.; Akinlabi, E.T.; Phiri, R.R.; Collieus, L.L.; Phuti, R.E. High-temperature properties of metal matrix composites. Encycl. Mater. Compos. 2021, 360–374. [Google Scholar] [CrossRef]
- Laurent, V.; Chatain, D.; Eustathopoulos, N. Wettability of SiO2 and soxidised SiC by aluminium. Mater. Sci. Eng. 1991, 135, 89–94. [Google Scholar] [CrossRef]
- Simmons, G.; Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook, 2nd ed.; MIT Press: Cambridge, MA, USA, 1971; ISBN 0262190923. [Google Scholar]
- Dostal, C.A. Engineered Materials Handbook; ASM International: Metals Park, OH, USA, 1989. [Google Scholar]
- Casari, D.; Ludwig, T.H.; Merlin, M.; Arnberg, L.; Garagnani, G.L. The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions. Mater. Sci. Eng. A 2014, 610, 414–426. [Google Scholar] [CrossRef]
- Ludwig, T.H.; Schaffer, P.L.; Arnberg, L. Influence of some trace elements on solidification path and microstructure of Al-Si foundry alloys. Met. Mater. Trans. A 2013, 44, 3783–3796. [Google Scholar] [CrossRef]
- Khalifa, W.; Samuel, F.H.; Gruzleski, J.E. Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Met. Mater. Trans. A 2003, 34, 807–825. [Google Scholar] [CrossRef]
- Melotti, F.; Dustan, A.; Hirst, T.; Griffiths, W.D. Effects of Ce on the thermal stability of the Ω phase in a cast aluminum metal matrix composite. Adv. Sci. Eng. Cast. Solidif. 2015, 137–144. [Google Scholar] [CrossRef]
- Al11Ce3(Ce3Ni0.25Al10.75) Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition—2012” in Springer Materials. Available online: https://materials.springer.com/isp/crystallographic/docs/sd_1821909 (accessed on 19 August 2021).
- Ma, H.; Zhang, X.; Liu, C.; Zhao, L.; Jiang, W. Structural, elastic, anisotropic and thermodynamic properties of the caged intermetallics RETi2Al20 (RE = La, Ce, Gd and Ho): A first-principles study. Solid State Sci. 2019, 89, 121–129. [Google Scholar] [CrossRef]
- CeTi2Al20 Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition—2012”. Available online: https://materials.springer.com/isp/crystallographic/docs/sd_1934769 (accessed on 19 August 2021).
- LaTi2Al20 Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition—2012”. Available online: https://materials.springer.com/isp/crystallographic/docs/sd_1013350 (accessed on 19 August 2021).
- Medvedev, A.E.; Murashkin, M.Y.; Enikeev, N.A.; Bikmukhametov, I.; Valiev, R.Z.; Hodgson, P.D.; Lapovok, R. Effect of the eutectic Al-(Ce, La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al-4.5(Ce, La) alloy after SPD and subsequent annealing. J. Alloys Compd. 2019, 796, 321–330. [Google Scholar] [CrossRef]
- Gouldstone, A.; Chollacoop, N.; Dao, M.; Li, J.; Minor, A.; Shen, Y. Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 2007, 55, 4015–4039. [Google Scholar] [CrossRef]
- Chen, C.-L.; Richter, A.; Thomson, R. Mechanical properties of intermetallic phases in multi-component Al–Si alloys using nanoindentation. Intermetallics 2009, 17, 634–641. [Google Scholar] [CrossRef]
- Chen, C.-L.; Richter, A.; Thomson, R. Investigation of mechanical properties of intermetallic phases in multi-component Al–Si alloys using hot-stage nanoindentation. Intermetallics 2010, 18, 499–508. [Google Scholar] [CrossRef]
- Nayak, S.; Riester, L.; Dahotre, N.B. Instrumented indentation probing of laser surface-refined cast Al alloy. J. Mater. Res. 2004, 19, 202–207. [Google Scholar] [CrossRef]
- Youn, S.; Seo, P.; Kang, C. A study on nano-deformation behavior of rheo-formed Al–Si alloy based on depth-sensing indentation with three-dimensional surface analysis. J. Mater. Process. Technol. 2005, 162–163, 260–266. [Google Scholar] [CrossRef]
- Tupaj, M.; Orłowicz, A.W.; Mróz, M.; Trytek, A.; Dolata, A.J.; Dziedzic, A. A study on material properties of intermetallic phases in a multicomponent hypereutectic al-si alloy with the use of nanoindentation testing. Materials 2020, 13, 5612. [Google Scholar] [CrossRef] [PubMed]
- Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M. Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. J. Alloys Compd. 2013, 551, 596–606. [Google Scholar] [CrossRef]
- Nanomechanics Inc., Nano- versus Micro- Indentation Hardness. Available online: https://nanomechanicsinc.com/indentation-hardness/ (accessed on 19 August 2021).
- Wang, J.; Du, Y.; Shang, S.-L.; Liu, Z.-K.; Li, Y. Effects of alloying elements on elastic properties of Al by first-principles calculations. J. Min. Met. Sect. B Met. 2014, 50, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanlou, S.; Ji, S. A review on high stiffness aluminum-based composites and bimetallics. Crit. Rev. Solid State Mater. Sci. 2020, 45, 1–21. [Google Scholar] [CrossRef]
- Ceschini, L.; Dahle, A.; Gupta, M.; Jarfors, A.E.W.; Jayalakshmi, S.; Morri, A.; Rotundo, F.; Toschi, S.; Singh, R.A. Metal matrix nanocomposites: An overview. In Aluminum and Magnesium Metal Matrix Nanocomposites; Springer: Singapore, 2017; pp. 1–17. ISBN 9789811026805. [Google Scholar]
- Alfonso, I.; Figueroa, I.A.; Rodriguez-Iglesias, V.; Patino-Carachure, C.; Medina, A.; Bejar, L.; Pérez, L. Estimation of elastic moduli of particulate-reinforced composites using finite element and modified Halpin–Tsai models. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 1317–1324. [Google Scholar] [CrossRef]
- Tam, D.; Ruan, S.; Gao, P.; Yu, T. High-performance ballistic protection using polymer nanocomposites. Adv. Mil. Text. Pers. Equip. 2012, 10, 213–237. [Google Scholar] [CrossRef]
Matrix Alloy | Si | Cu | Ni | Fe | Mn | Ti | Mg | Ce | La | Al |
---|---|---|---|---|---|---|---|---|---|---|
C0 | 10 | 0.2 | - | 0.1 | - | 0.1 | 0.8 | - | - | bal. |
C1 | 10 | 1.9 | 1.9 | 0.1 | 0.8 | 0.1 | 0.8 | 1 | 1 | bal. |
Assigned Phase/ Morphology | Composition | Al | Si | Fe | Mg | Mn | La | Ce | Ti | Ni | Cu | Material |
---|---|---|---|---|---|---|---|---|---|---|---|---|
π-Al8FeMg3Si6/ lath | detected | 72.5–75.3 | 14.4–17.9 | 1.2–2.1 | 7.6–9.2 | - | - | - | - | - | - | C0 |
nominal | 44.4 | 33.3 | 5.5 | 16 | - | - | - | - | - | - | ||
α-Al15(Fe,Mn)3Si2/ polygonal | detected | 70.0–71.6 | 10.0–11.8 | 3.5–3.54 | - | 11.7–12.0 | - | - | - | 1.47–1.5 | - | C1 |
nominal | 65.2 | 8.6 | 13 | - | 13 | - | - | - | - | - | ||
Al20(Ce,La)Ti2/ polygonal | detected | 82.1–83.6 | 3.8–6.1 | - | - | - | 1.9–2.1 | 2.5–2.7 | 6.8–7.2 | - | 0.69–0.74 | C1 |
nominal | 83.3 | – | - | - | - | 4.1 | 4.1 | 8.2 | - | - | ||
Al11(Ce,La)3/ lath | detected | 58.0–65.9 | 15.8–18.1 | - | - | - | 1.0–4.8 | 0.8–4.0 | - | 3–12.2 | 1.6–6.6 | C1 |
nominal | 64.7 | - | - | - | - | 17 | 17 | - | - | - |
Phase | Composite | Hardness/GPa | Elastic Modulus/GPa |
---|---|---|---|
α-Al | C0 | 0.98 ± 0.01 | 88.2 ± 1.5 |
C1 | 1.24 ± 0.05 | 93.9 ± 3.4 | |
Al-Si eutectic | C0 | 1.51 ± 0.04 | 97.2 ± 3.2 |
C1 | 2.00 ± 0.13 | 106.4 ± 5.1 | |
SiC | C0 | 27.7 ± 2.6 | 335.2 ± 30.7 |
C1 | 30.2 ± 2.3 | 402.5 ± 45.0 | |
π-Al8FeMg3Si6 | C0 | 2.1 ± 0.6 | 111.0 ± 44.0 |
Al20(Ce,La)Ti2 | C1 | 6.8 ± 0.8 | 148.1 ± 13.6 |
Al11(La,Ce)3 | C1 | 2.8 ± 0.6 | 124.3 ± 27.4 |
α-Al15(Fe,Mn)3Si2 | C1 | 8.4 ± 3.0 | 158.0 ± 32.8 |
Phase | Composite | Fraction |
---|---|---|
α-Al | C0 | 0.89 |
C1 | 0.76 | |
Al-Si eutectic | C0 | 0.09 |
C1 | 0.08 | |
SiC | C0 | 0.14 |
C1 | 0.14 | |
π-Al8FeMg3Si6 | C0 | 0.004 |
Al20(Ce,La)Ti2 | C1 | 0.030 |
Al11(La,Ce)3 | C1 | 0.037 |
α-Al15(Fe,Mn)3Si2 | C1 | 0.028 |
Composite | Rules of Mixture | Em [GPa] | Ec [GPa] |
---|---|---|---|
C0 | upper-bound modulus equation | 90.5 | 113.9 |
lower-bound modulus equation | 87.7 | 111.0 | |
C1 | upper-bound modulus equation | 105.1 | 133.1 |
lower-bound modulus equation | 93.4 | 120.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, A.; Lattanzi, L.; Jarfors, A.W.E.; Zheng, J.; Wang, K.; Yu, G. On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition. Materials 2021, 14, 6287. https://doi.org/10.3390/ma14216287
Du A, Lattanzi L, Jarfors AWE, Zheng J, Wang K, Yu G. On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition. Materials. 2021; 14(21):6287. https://doi.org/10.3390/ma14216287
Chicago/Turabian StyleDu, Andong, Lucia Lattanzi, Anders Wollmar Eric Jarfors, Jinchuan Zheng, Kaikun Wang, and Gegang Yu. 2021. "On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition" Materials 14, no. 21: 6287. https://doi.org/10.3390/ma14216287
APA StyleDu, A., Lattanzi, L., Jarfors, A. W. E., Zheng, J., Wang, K., & Yu, G. (2021). On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition. Materials, 14(21), 6287. https://doi.org/10.3390/ma14216287