The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel
Abstract
:1. Introduction
- There will be no difference in the effect on enamel microhardness between the tested materials.
- There will be no difference in the mineral composition of the specimens treated with the tested materials.
- The micro-surface of all specimens will be the same.
2. Materials and Methods
2.1. Sample Preparation
2.2. Demineralization and Remineralization Cycle
2.3. Vickers Microhardness Measurement
2.4. SEM/EDS Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, S.L. Human Enamel Structure Studied by High Resolution Electron Microscopy. Electron. Microsc. Rev. 1989, 2, 1–16. [Google Scholar] [PubMed]
- Gil-Bona, A.; Bidlack, F.B. Tooth Enamel and its Dynamic Protein Matrix. Int. J. Mol. Sci. 2020, 21, 4458. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, M.-D.-M.; Catelan, A.; De Resende, L.-F.-M.; Soares, L.-E.-S.; Aguiar, F.H.B.; Liporoni, P.-C.-S. Chemical composition and roughness of enamel and composite after bleaching, acidic beverages and toothbrushing. J. Clin. Exp. Dent. 2019, 11, e1175–e1180. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-T.; Wang, Y.-L.; Yeh, T.-W.; Lee, H.-C.; Chen, W.-J.; Ke, J.-L.; Lee, Y.-J. Early detection of enamel demineralization by optical coherence tomography. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ericson, D.; Kidd, E.; McComb, D.; Mjör, I.; Noack, M.J. Minimally Invasive Dentistry—Concepts and techniques in cariology. Oral Health Prev. Dent. 2003, 1, 59–72. [Google Scholar] [PubMed]
- Christensen, G.J. The advantages of minimally invasive dentistry. J. Am. Dent. Assoc. 2005, 136, 1563–1565. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Rodelo, J.J.; Medina-Solís, C.E.; Verdugo-Barraza, L.; Islas-Granillo, H.; García-Jau, R.A.; Escoffié-Ramírez, M.; Maupomé, G. Experience of Non-Reversible and Reversible Carious Lesions in 11 and 12 Years Old Mexican Schoolchildren: A Negative Binomial Regression Analysis. Biomedica 2013, 33, 88–98. [Google Scholar] [PubMed]
- Parkin, N.; Dyer, F.; Millett, D.T.; Furness, S.; Germain, P. Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst. Rev. 2013, CD003809. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M. Regular supervised fluoride mouthrinse use by children and adolescents associated with caries reduction. Evid.-Based Dent. 2017, 18, 11–12. [Google Scholar] [CrossRef]
- Fejerskov, O. Changing Paradigms in Concepts on Dental Caries: Consequences for Oral Health Care. Caries Res. 2004, 38, 182–191. [Google Scholar] [CrossRef]
- Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef]
- National Research Council. Health Effects of Ingested Fluoride; National Academies Press: Washington, DC, USA, 1993. [Google Scholar]
- Al-Noaman, A.; Karpukhina, N.; Rawlinson, S.; Hill, R.G. Effect of FA on bioactivity of bioactive glass coating for titanium dental implant. Part I: Composite powder. J. Non-Cryst. Solids 2013, 364, 92–98. [Google Scholar] [CrossRef]
- Stanić, V.; Radosavljević-Mihajlović, A.S.; Živković-Radovanović, V.; Nastasijević, B.; Marinović-Cincović, M.; Marković, J.P.; Budimir, M.D. Synthesis, Structural Characterisation and Antibacterial Activity of Ag+-Doped Fluorapatite Nanomaterials Prepared by Neutralization Method. Appl. Surf. Sci. 2015, 337, 72–80. [Google Scholar] [CrossRef]
- Reynolds, E. Remineralization of Enamel Subsurface Lesions by Casein Phosphopeptide-stabilized Calcium Phosphate Solutions. J. Dent. Res. 1997, 76, 1587–1595. [Google Scholar] [CrossRef]
- Kalra, D.; Kalra, R.; Kini, P.; Prabhu, C.A. Nonfluoride remineralization: An evidence-based review of contemporary technologies. J. Dent. Allied Sci. 2014, 3, 24. [Google Scholar] [CrossRef]
- Naik, S.V.; Attiguppe, P.; Malik, N.; Ballal, S. CPP–ACP and Fluoride: A Synergism to Combat Caries. Int. J. Clin. Pediatr. Dent. 2019, 12, 120–125. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, X.; Wu, Y. Remineralising Nanomaterials for Minimally Invasive Dentistry. In Nanotechnology in Endodontics: Current and Potential Clinical Applications; Kishen, A., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 173–193. [Google Scholar]
- Arifa, M.K.; Ephraim, R.; Rajamani, T. Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature. Int. J. Clin. Pediatr. Dent. 2019, 12, 139–144. [Google Scholar] [CrossRef]
- Amin, M.; Mehta, R.; Duseja, S.; Desai, K. Evaluation of the Efficacy of Commercially Available Nano-Hydroxyapatite Paste as a Desensitising Agent. Adv. Oral. Biol. 2015, 5, 34–38. [Google Scholar]
- Tschoppe, P.; Zandim, D.L.; Martus, P.; Kielbassa, A.M. Enamel and Dentine Remineralization by Nano-Hydroxyapatite Toothpastes. J. Dent. 2011, 39, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, O.; Burrow, M.; Tyas, M. An SEM evaluation of conditioned and bonded enamel following carbamide peroxide bleaching and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) treatment. J. Dent. 2009, 37, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Caruana, P.C.; Al Mulaify, S.; Moazzez, R.; Bartlett, D. The effect of casein and calcium containing paste on plaque pH following a subsequent carbohydrate challenge. J. Dent. 2009, 37, 522–526. [Google Scholar] [CrossRef]
- Souza, R.O.A.; Lombardo, G.H.L.; Pereira, S.M.B.; Zamboni, S.C.; Valera, M.C.; Araujo, M.A.M.; Ozcan, M. Analysis of tooth enamel after excessive bleaching: A study using scanning electron microscopy and energy dispersive X-ray spectroscopy. Int. J. Prosthodont. 2010, 23, 29–32. [Google Scholar]
- Chuenarrom, C.; Benjakul, P.; Daosodsai, P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mater. Res. 2009, 12, 473–476. [Google Scholar] [CrossRef]
- Farooq, I.; Majeed, A.; Alshwaimi, E.; Almas, K. Efficacy of a Novel Fluoride Containing Bioactive Glass Based Dentifrice in Remineralizing Artificially Induced Demineralization in Human Enamel. Fluoride 2019, 52, 447–455. [Google Scholar]
- George, L.; Baby, A.; Dhanapal, T.P.; Charlie, K.M.; Joseph, A.; Varghese, A.A. Evaluation and comparison of the microhardness of enamel after bleaching with fluoride free and fluoride containing carbamide peroxide bleaching agents and post bleaching anticay application: An in vitro study. Contemp. Clin. Dent. 2015, 6, S163–S166. [Google Scholar] [CrossRef]
- Molaasadolah, F.; Eskandarion, S.; Ehsani, A.; Sanginan, M. In Vitro Evaluation of Enamel Microhardness after Application of Two Types of Fluoride Varnish. J. Clin. Diagn. Res. 2017, 11, ZC64–ZC66. [Google Scholar] [CrossRef] [PubMed]
- Sorozini, M.; Perez, C.R.; Rocha, G.M. Enamel sample preparation for AFM: Influence on roughness and morphology. Microsc. Res. Tech. 2018, 81, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Damato, F.A.; Strang, R.; Stephen, K.W. Effect of Fluoride Concentration on Remineralization of Carious Enamel: An In Vitro Ph-Cycling Study. Caries Res. 1990, 24, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Microbiologic aspects of dental plaque and dental caries. Dent. Clin. N. Am. 1999, 43, 599–614. [Google Scholar]
- Ali, S.; Farooq, I.; Al-Thobity, A.M.; Al-Khalifa, K.S.; Alhooshani, K.; Sauro, S. An in-vitro evaluation of fluoride content and enamel remineralization potential of two toothpastes containing different bioactive glasses. Bio-Med. Mater. Eng. 2020, 30, 487–496. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Jonathan, R.; Benin, P.; Kuumar, A. Evaluation to determine the caries remineralization potential of three dentifrices: An in vitro study. J. Conserv. Dent. 2013, 16, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.; Ataide, I.D.N.D.; Fernandes, M.; Lambor, R. Assessment of Enamel Remineralisation after Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study. J. Clin. Diagn. Res. 2017, 11, ZC136–ZC141. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.N.; Moany, A. Remineralization of Enamel Subsurface Lesions with Casein Phosphopeptide-Amorphous Calcium Phosphate: A Quantitative Energy Dispersive X-Ray Analysis Using Scanning Electron Microscopy: An In Vitro Study. J. Conserv. Dent. 2012, 15, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegehaupt, F.J.; Tauböck, T.T.; Stillhard, A.; Schmidlin, P.R.; Attin, T. Influence of extra- and intra-oral application of CPP-ACP and fluoride on re-hardening of eroded enamel. Acta Odontol. Scand. 2011, 70, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Vyavhare, S.; Sharma, D.S.; Kulkarni, V.K. Effect of Three Different Pastes on Remineralization of Initial Enamel Lesion: An in Vitro Study. J. Clin. Pediatr. Dent. 2015, 39, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Shen, P.; Morgan, M.V.; Reynolds, E.C. Remineralization of Enamel Subsurface Lesions In Situ by Sugar-Free Lozenges Containing Casein Phosphopeptide-Amorphous Calcium Phosphate. Aust. Dent. J. 2003, 48, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Jayarajan, J.; Janardhanam, P.; Jayakumar, P. Deepika Efficacy of CPP-ACP and CPP-ACPF on enamel remineralization—An in vitro study using scanning electron microscope and DIAGNOdent®. Indian J. Dent. Res. 2011, 22, 77–82. [Google Scholar] [CrossRef]
- Somani, R.; Jaidka, S.; Singh, D.J.; Arora, V. Remineralizing potential of various agents on dental erosion. J. Oral Biol. Craniofacial Res. 2014, 4, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Juntavee, A.; Juntavee, N.; Hirunmoon, P. Remineralization Potential of Nanohydroxyapatite Toothpaste Compared with Tricalcium Phosphate and Fluoride Toothpaste on Artificial Carious Lesions. Int. J. Dent. 2021, 2021, 5588832. [Google Scholar] [CrossRef]
- Amaechi, B.T.; AbdulAzees, P.A.; Alshareif, D.O.; Shehata, M.A.; Lima, P.P.D.C.S.; Abdollahi, A.; Kalkhorani, P.S.; Evans, V. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Najibfard, K.; Ramalingam, K.; Chedjieu, I.; Amaechi, B.T. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011, 22, 139–143. [Google Scholar] [PubMed]
- Grandjean, P. Developmental fluoride neurotoxicity: An updated review. Environ. Health 2019, 18, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.B.; Gao, S.S.; Yu, H.Y. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed. Mater. 2009, 4, 034104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grocholewicz, K.; Matkowska-Cichocka, G.; Makowiecki, P.; Droździk, A.; Ey-Chmielewska, H.; Dziewulska, A.; Tomasik, M.; Trybek, G.; Janiszewska-Olszowska, J. Effect of nano-hydroxyapatite and ozone on approximal initial caries: A randomized clinical trial. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shaik, Z.A.; Rambabu, T.; Sajjan, G.; Varma, M.; Satish, K.; Raju, V.B.; Ganguru, S.; Ventrapati, N. Quantitative Analysis of Remineralization of Artificial Carious Lesions with Commercially Available Newer Remineralizing Agents Using SEM-EDX- In Vitro Study. J. Clin. Diagn. Res. 2017, 11, ZC20–ZC23. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, T.; Sauro, S.; Pashley, D.H.; Toledano, M.; Osorio, R.; Liang, S.; Xing, W.; Sa, Y.; Wang, Y. The dentine remineralization activity of a desensitizing bioactive glass-containing toothpaste: An in vitro study. Aust. Dent. J. 2011, 56, 372–381. [Google Scholar] [CrossRef]
Material | Active Ingredients | Manufacturer |
---|---|---|
3M™ Clinpro™ White Varnish | 22,600 ppm fluoride | 3M ESPE, St. Paul, MN, USA |
MI Varnish® | Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), 5% sodium fluoride | GC Corporation, Tokyo, Japan |
Megasonex® | Nano-hydroxyapatite | Panaford B.V., Rotterdam, The Netherlands |
Microhardness Groups | Baseline | After Demineralization | After Remineralization |
---|---|---|---|
3M™ Clinpro™ White Varnish | 366.00 ± 18.93 | 190.30 ± 23.71 | 236.57 ± 19.41 |
MI Varnish® | 343.52 ± 26.66 | 192.73 ± 16.37 | 286.65 ± 34.07 |
Megasonex® | 393.05 ± 16.14 | 201.90 ± 15.30 | 237.97 ± 32.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinovic, I.; Schauperl, Z.; Marcius, M.; Miletic, I. The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel. Materials 2021, 14, 6051. https://doi.org/10.3390/ma14206051
Salinovic I, Schauperl Z, Marcius M, Miletic I. The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel. Materials. 2021; 14(20):6051. https://doi.org/10.3390/ma14206051
Chicago/Turabian StyleSalinovic, Ivan, Zdravko Schauperl, Marijan Marcius, and Ivana Miletic. 2021. "The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel" Materials 14, no. 20: 6051. https://doi.org/10.3390/ma14206051