Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Keratin from Rabbit Hair
2.3. Keratin Characterization
3. Results and Discussion
3.1. Extraction of Keratin from Rabbit Hair
3.2. Effect of Extraction Conditions on Extraction Efficiency
3.3. Molecular Structure Characterization of Keratin
3.4. Property Characterization of Keratin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shavandi, A.; Silva, T.H.; Bekhit, A.A.; Bekhit, E.D. Keratin: Dissolution, extraction and biomedical application. Biomater. Sci. 2017, 5, 1699–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable materials based on silk fibroin and keratin. Macromolecules 2008, 9, 1299–1305. [Google Scholar]
- Wang, S.; Wang, Z.; Foo, S.E.M.; Tan, N.S.; Yuan, Y.; Lin, W.; Zhang, Z.; Ng, K.W. Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 5187. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gong, J.S.; Ye, J.P.; He, J.M.; Li, R.Y.; Jiang, M.; Geng, Y.; Zhang, Y.; Chen, J.H.; Xu, Z.H.; et al. Enzymatic extraction of bioactive and self-assembling wool keratin for biomedical applications. Macromol. Biosci. 2020, 20, 2000073. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Kaneko, S.; Tanabe, T.; Yamauchi, K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005, 26, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.G.; Van Dyke, M.E. A review of keratin-based biomaterials for biomedical applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef] [Green Version]
- DeFrates, K.G.; Robert, M.; Julia, B.; Guowei, L.; Thomas, M.; Vince, B.; Xu, H. Protein-based fiber materials in medicine: A review. Nanomaterials 2018, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Kornillowicz-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 2011, 31, 1689–1701. [Google Scholar] [CrossRef]
- Bhavsar, P.; Zoccola, M.; Patrucco, A.; Montarsolo, A.; Mossotti, R.; Rovero, G.; Giansetti, M.; Tonin, C. Superheated water hydrolysis of waste wool in a semi-industrial reactor to obtain nitrogen fertilizers. ACS Sustain. Chem. Eng. 2016, 4, 6722–6731. [Google Scholar] [CrossRef]
- Salminen, E.; Rintala, J. Anaerobic digestion of organic solid poultry slaughterhouse waste-a review. Bioresour. Technol. 2002, 83, 13–26. [Google Scholar] [CrossRef]
- Nakamura, A.; Arimoto, M.; Takeuchi, K.; Fujii, T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol. Pharm. Bull. 2002, 25, 569–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carolina, C.A.; Ricardo, F.; Ana, P.; Manuela, A.; Carlos, D.P.; Raquel, M.A.; Pintado, M.E. Novel eco-friendly method to extract keratin from hair. ACS Sustain. Chem. Eng. 2018, 6, 12268–12274. [Google Scholar]
- Zoccola, M.; Aluigi, A.; Patrucco, A.; Vineis, C.; Forlini, F.; Locatelli, P.; Sacchi, M.C.; Tonin, C. Microwave-assisted chemical-free hydrolysis of wool keratin. Text. Res. J. 2012, 82, 2006–2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Yang, R. Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain. Chem. Eng. 2015, 3, 2036–2042. [Google Scholar] [CrossRef]
- Blackburn, S.; Lee, G.R. The reaction of wool keratin with alkali. Biochim. Biophys. Acta 1956, 19, 505–512. [Google Scholar] [CrossRef]
- Tsuda, Y.; Nomura, Y. Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim. Sci. J. 2014, 85, 180–185. [Google Scholar] [CrossRef]
- Aluigi, A.; Zoccola, M.; Vineis, C.; Tonin, C.; Ferrero, F.; Canetti, M. Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 2007, 41, 266–273. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, J.S.; Zhao, Z.; Liu, X.; Li, Z.; Han, Y.X.; Hu, J.Y.; Chen, A.Z. Isolation and characterization of biofunctional keratin particles extracted from wool wastes. Powder Technol. 2013, 246, 356–362. [Google Scholar] [CrossRef]
- Fan, J.; Yu, W.D. High yield preparation of keratin powder from wool fiber. Fiber Polym. 2012, 13, 1044–1049. [Google Scholar] [CrossRef]
- Timmons, S.F.; Blanchard, C.R.; Smith, R.A. Method of Making and Cross-Linking Keratin-Based Films and Sheets. U.S. Patent 6,124,265, 26 September 2000. [Google Scholar]
- Goddard, D.R.; Michaelis, L. Derivatives of keratin. J. Biol. Chem. 1935, 112, 361–371. [Google Scholar] [CrossRef]
- Poole, A.J.; Lyons, R.E.; Church, J.S. Dissolving feather keratin using sodium sulfide for bio-polymer applications. J. Polym. Environ. 2011, 19, 995–1004. [Google Scholar] [CrossRef]
- Katoh, K.; Tanabe, T.; Yamauchi, K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 2004, 25, 4255–4262. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, Z.; Yang, Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J. Mater. Sci. 2014, 49, 7513–7521. [Google Scholar] [CrossRef]
- Li, S.T.; Zhang, Y.; Zhang, H.; Zhang, R. Extraction of keratin from rabbit hair using L- cystein as reductive agent. Fine Chem. 2017, 34, 954–960. [Google Scholar]
- Idris, A.; Vijayaraghavan, R.; Rana, U.A.; Fredericks, D.; Patti, A.F.; Macfarlane, D.R. Dissolution of feather keratin in ionic liquids. Green Chem. 2013, 15, 525–534. [Google Scholar] [CrossRef]
- Ghosh, A.; Clerens, S.; Deb-Choudhury, S.; Dyer, J.M. Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polym. Degrad. Stab. 2014, 108, 108–115. [Google Scholar] [CrossRef]
- Wang, D.; Yang, X.H.; Tang, R.C.; Yao, F. Extraction of keratin from rabbit hair by a deep eutectic solvent and its characterization. Polymers 2018, 10, 993. [Google Scholar] [CrossRef] [Green Version]
- Li, S.T. Extraction of L-Arginine from Rabbit Hair. Master’s Thesis, Tiangong University, Tianjin, China, June 2017. [Google Scholar]
- Qian, B.Q. The present situation and development prospect of rabbit hair. Chin. J. Rabbit Farm. 2017, 6, 19–21. [Google Scholar]
- Guzin, K.Y. Angora rabbit fiber production in the world and Turkey. Am. J. Mater. Eng. Technol. 2014, 2, 8–10. [Google Scholar]
- Yan, H.J.; Yu, X.F. Study on the structure and properties of rabbit hair. J. Text. Res. 1988, 9, 52–55. [Google Scholar]
- Yan, S.T. A review of the structure and properties of rabbit hair. China Fiber Insp. 1991, 6, 18–22. [Google Scholar]
- Antunes, E.; Cruz Célia, F.; Azoia, N.G.; Cavaco-Paulo, A. The effects of solvent composition on the affinity of a peptide towards hair keratin: Experimental and molecular dynamics data. RSC Adv. 2015, 5, 12365–12371. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; Gioia, S.D.; Mezzetti, A.; Ciofani, G.; Cuccurullo, F. Aminophylline: Could it act as an antioxidant in vivo? Eur. J. Clin. Investig. 1995, 25, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.G.; Qian, W.W.; Zhu, H.J.; Wang, Q.; Fan, X.R.; Wang, P.; Li, Z.R. Influence of ultrasonic treatment on structure of wool fiber. Tex. Dye. Finish. J. 2013, 35, 11–14. [Google Scholar]
- Yao, J.B. Application and Preparation of Wool’s Keratin Solution. Ph.D. Thesis, Tianjin Polytechnic University, Tianjin, China, August 2003. [Google Scholar]
- Na Ayutthaya, S.I.; Tanpichai, S.; Wootthikanokkhan, J. Keratin extracted from chicken feather waste: Wxtraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J. Polym. Environ. 2015, 23, 506–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.T.; Zhang, H.; Zhang, Z.L. Structural characterization and application of rabbit whiting. J. Text. Res. 2017, 38, 20–26. [Google Scholar]
- Moore, K.E.; Mangos, D.N.; Slattery, A.D.; Raston, C.L.; Boulos, R.A. Wool deconstruction using a benign eutectic melt. RSC Adv. 2016, 6, 20095–20101. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gupta, A.; Saufi, B.T.C.S.M.; Gek Kee, C.Y.; Poddar, P.K. Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers. IOP Conf. Ser. Mater. Sci. Eng. 2017, 191, 012013. [Google Scholar] [CrossRef] [Green Version]
- Erra, P.; Gómez, N.; Dolcet, L.M.; Juliá, M.R.; Lewis, D.M.; Willoughby, J.H. FTIR analysis to study chemical changes in wool following a sulfitolysis treatment. Text. Res. J. 1997, 67, 397–401. [Google Scholar] [CrossRef]
- Ramachandran, E.; Natarajan, S. Crystal growth of some urinary stone constituents: III. In-vitro crystallization of L-cystine and its characterization. Cryst. Res. Technol. 2004, 39, 308–312. [Google Scholar] [CrossRef]
- Aluigi, A.; Tonetti, C.; Rombaldoni, F.; Puglia, D.; Fortunati, E.; Armentano, I.; Santulli, C.; Torre, L.; Kenny, J.M. Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. J. Mater. Sci. 2014, 49, 6257–6269. [Google Scholar] [CrossRef]
- Cardamone, J.M. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J. Mol. Struct. 2010, 969, 97–105. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Wochowicz, A.; Weseucha-Birczyńska, A. Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin. J. Mol. Struct. 1999, 511, 307–318. [Google Scholar] [CrossRef]
- Mi, X.; Li, W.; Xu, H.; Mu, B.; Yang, Y. Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry. Waste Manag. 2020, 115, 65–73. [Google Scholar] [CrossRef]
- Kuzuhara, A.; Hori, T. Analysis of heterogeneous reaction between reducing agents and keratin fibers using Raman spectroscopy and microspectrophotometry. J. Mol. Struct. 2013, 1037, 85–92. [Google Scholar] [CrossRef]
- Lin, D.; Lin, W.; Gao, G.Z.; Zhou, J.W.; Chen, T.B.; Ke, L.J.; Rao, P.F.; Wang, Q. Purification and characterization of the major protein isolated from Semen Armeniacae Amarum and the properties of its thermally induced nanoparticles. Int. J. Biol. Macromol. 2020, 159, 850–858. [Google Scholar] [CrossRef]
- Fontoura, R.; Daroit, D.J.; Corrêa, A.P.F.; Moresco, K.S.; Brandelli, A. Characterization of a novel antioxidant peptide from feather keratin hydrolysates. N. Biotechnol. 2018, 49, 71–76. [Google Scholar] [CrossRef]
- Loannou, Y.A.; Chen, F.W. Quantitation of DNA fragmentation in apoptosis. Nucl. Acids Res. 1996, 5, 992–993. [Google Scholar] [CrossRef] [Green Version]
Ultrasonic Treatment Time/h | Extraction Time/h | NaHSO3/g | Urea Dose/g | Temperature/°C | pH |
---|---|---|---|---|---|
0 | 3 | 0.8 | 12.3 | 100 | 8 |
1 | 4.5 | 1 | 13.8 | 90 | 9 |
2 | 6 | 1.2 | 15.3 | 80 | 10 |
3 | 7.5 | 1.4 | 16.8 | 70 | 11 |
4 | - | 1.6 | 18.3 | 60 | 12 |
Sample | Wavenumber (cm−1) | Assignment | Content (%) |
---|---|---|---|
Untreated rabbit hair | 1618 | β-sheet | 9.66 |
1651 | α-helix | 43.73 | |
1697 | random coil | 38.98 | |
1738 | Terminal COOH | 7.63 | |
Ultrasonic treatment rabbit hair | 1620 | β-sheet | 11.14 |
1650 | α-helix | 35.63 | |
1699 | random coil | 49.86 | |
1742 | Terminal COOH | 3.37 | |
Keratin | 1617 | β-sheet | 10.72 |
1645 | random coil | 29.06 | |
1686 | β-sheet/random coil | 48.36 | |
1740 | Terminal COOH | 11.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shi, Z.; Zhao, Q.; Yun, Y. Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair. Materials 2021, 14, 379. https://doi.org/10.3390/ma14020379
Wang X, Shi Z, Zhao Q, Yun Y. Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair. Materials. 2021; 14(2):379. https://doi.org/10.3390/ma14020379
Chicago/Turabian StyleWang, Xiaoqing, Zhiming Shi, Qinglong Zhao, and Yu Yun. 2021. "Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair" Materials 14, no. 2: 379. https://doi.org/10.3390/ma14020379
APA StyleWang, X., Shi, Z., Zhao, Q., & Yun, Y. (2021). Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair. Materials, 14(2), 379. https://doi.org/10.3390/ma14020379