Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Synthesis of the Extractants
2.3. Apparatus
2.4. Extraction and Stripping
3. Results and Discussion
3.1. Extraction from One-Component Solutions
3.1.1. Extraction of Palladium(II) Species
3.1.2. Extraction of Platinum(IV) Species
3.1.3. Effect of Extractant Concentration in the Organic Phase
3.2. Stripping from the Loaded Organic Phases
3.3. FT-IR Analysis of the Organic Phases
3.4. Extraction from Two-Component Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. [Google Scholar] [CrossRef]
- Rzelewska, M.; Regel-Rosocka, M. Wastes generated by automotive industry—Spent automotive catalysts. Phys. Sci. Rev. 2018, 20180021. [Google Scholar] [CrossRef]
- Rane, M.V. PGM ore processing: LIX reagents for palladium extraction & platinum stripping from Alamine 336 using NaOH-NaCl. Miner. Eng. 2019, 138, 119–124. [Google Scholar] [CrossRef]
- Oshima, T.; Iwao, S.; Matsuo, N.; Ohe, K. Extraction Behavior of Precious Metals in Hydrochloric-acid Media Using a Novel Amine Extractant Bearing a Furna Group. Solvent Extr. Res. Develop. Jpn. 2019, 26, 69–80. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sonu, C.H.; Lee, M.S. Separation of platinum(IV) and palladium(II) from concentrated hydrochloric acid solutions by mixtures of amines with neutral extractants. J. Ind. Eng. Chem. 2015, 32, 238–245. [Google Scholar] [CrossRef]
- Raju, B.; Rajesh Kumar, J.; Lee, J.Y.; Kwonc, H.S.; Lakshmi Kantam, M.; Ramachandra Reddy, B. Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods. J. Hazard. Mater. 2012, 227–228, 142–147. [Google Scholar] [CrossRef]
- Wei, W.; Cho, C.W.; Kim, S.; Song, M.H.; Kwame Bediako, J.; Yun, Y.S. Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. J. Mol. Liq. 2016, 216, 18–24. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Binnemans, K. Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chem. 2020, 22, 8375. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Wisniewski, M.; Borowiak-Resterna, A.; Cieszynska, A.; Sastre, A.M. Selective extraction of palladium(II) from hydrochloric acid solutions with pyridinecarboxamides and ACORGA® CLX50. Sep. Purif. Technol. 2007, 53, 337–341. [Google Scholar] [CrossRef]
- Truong, H.T.; Lee, M.S.; Senanayake, G. Separation of Pt(IV), Rh(III) and Fe(III) in acid chloride leach solutions of glass scraps by solvent extraction with various extractants. Hydrometallurgy 2018, 175, 232–239. [Google Scholar] [CrossRef]
- Rzelewska-Piekut, M.; Regel-Rosocka, M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids. Sep. Purif. Technol. 2019, 212, 791–801. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wieczorek, D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 2018, 175, 359–366. [Google Scholar] [CrossRef]
- Rzelewska, M.; Baczyńska, M.; Regel-Rosocka, M.; Wiśniewski, M. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions. Chem. Pap. 2016, 70, 454–460. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q.; Xiang, Z.; Yang, Y. Separation of Pt(IV), Pd(II), Ru(III), and Rh(III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids. Sep. Sci. Technol. 2018, 53, 2064–2073. [Google Scholar] [CrossRef]
- Yamada, M.; Rajiv Gandhi, M.; Shibayama, A. Rapid and selective recovery of palladium from platinum group metals and base metals using a thioamide-modified calix[4]arene extractant in environmentally friendly hydrocarbon fluids. Sci. Rep. 2018, 8, 16909. [Google Scholar] [CrossRef]
- Yamada, M.; Kaneta, Y.; Rajiv Gandhi, M.; Maheswara Rao Kunda, U.; Shibayama, A. Recovery of Pd(II) and Pt(IV) from leach liquors of automotive catalysts with calixarene-based di-n-alkylamino extractants in saturated hydrocarbon diluents. Hydrometallurgy 2019, 184, 103–108. [Google Scholar] [CrossRef]
- Torrejos, R.E.C.; Nisola, G.M.; Min, S.H.; Han, J.W.; Lee, S.-P.; Chung, W.-J. Highly selective extraction of palladium from spent automotive catalyst acid leachate using novel alkylated dioxa-dithiacrown ether derivatives. J. Ind. Eng. Chem. 2020, 89, 428–435. [Google Scholar] [CrossRef]
- Reis, M.T.A.; Ismael, M.R.C.; Wojciechowska, A.; Wojciechowska, I.; Aksamitowski, P.; Wieszczycka, K.; Carvalho, J.M.R. Zinc(II) recovery using pyridine oxime-ether—Novel carrier in pseudoemulsion hollow fiber strip dispersion system. Sep. Purif. Technol. 2019, 223, 168–177. [Google Scholar] [CrossRef]
- Wojciechowska, I.; Wieszczycka, K.; Wojciechowska, A.; Aksamitowski, P. Ether derivatives—Efficient Fe(III) extractants from HCl solution. Sep. Purif. Technol. 2019, 209, 756–763. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction Principles and Practice; Marcel Dekker, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Bernardis, F.L.; Grant, R.A.; Sherrington, D.C. A review of methods of separation of the platinum-group metals through their chloro-complexes. React. Funct. Polym. 2005, 65, 205–217. [Google Scholar] [CrossRef]
- Pirogov, A.V.; Havel, J. Determination of platinum, palladium, osmium, iridium, rhodium and gold as chloro complexes by capillary zone electrophoresis. J. Chromatogr. A 1997, 772, 347–355. [Google Scholar] [CrossRef]
- Staszak, K.; Wojciechowska, I.; Staszak, M.; Wieszczycka, K. Surface activity measurements and quantum molecular modeling—The way to extraction behavior knowledge? J. Mol. Liq. 2020, 114513. [Google Scholar] [CrossRef]
- Rzelewska, M.; Baczyńska, M.; Wiśniewski, M.; Regel-Rosocka, M. Phosphonium ionic liquids as extractants for recovery of ruthenium(III) from acidic aqueous solutions. Chem. Pap. 2017, 71, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Dash, T.; Nathsarma, K.C.; Sarangi, K. Extraction of ruthenium using both tertiary and quaternary amine from chloride media. Sep. Sci. Technol. 2014, 49, 545–552. [Google Scholar] [CrossRef]
Aqueous Feed | Organic Phase | Extraction Efficiency (E, %) | Stripping Efficiency (S, %) | Ref. |
---|---|---|---|---|
Model solutions of Pd(II) or Pt(IV) and real leach solution: 0.39 g/dm3 Pt(IV), 0.5 g/dm3 Pd(II), 26 g/dm3 Fe ions, 20 g/dm3 Mn ions, 5.4 g/dm3 Ca(II), 6.2 g/dm3 Zn(II), 1.3 g/dm3 Cu(II), 8.6 g/dm3 Al(III), 0.3 g/dm3 Ni(II), 0.06 g/dm3 Co(II), 0.42 N H+ | LIX 84I or LIX 64N, or LIX 70, or LIX 984 in dodecane for Pd(II) Alamine 336 in kerosene for Pt(IV) | From leach solution: in I step: EPd~100% with 8% LIX 984 in dodecane at A/O = 5 and pH = 2.75 in II steps: EPt = 100% with 1% Alamine 336 in kerosene at A/O = 3 and pH = 1 | SPd = 100% Pd(II) stripping with 6 M HCl from the loaded organic phase scrubbed twice with 1.5 M H2SO4 (to remove Cu(II)) SPt = 100% with mixture of 1 M NaOH and 1 M NaCl | [3] |
120 mg/dm3 Pt(IV) and 50 mg/dm3 Pd(II) in 1–8 M HCl | Mixture of amines (Aliquat 336/Alamine 336/TOA) and neutral extractants (TBP/TOP/MIBK) in kerosene with decanol addition | EPt = 100%, EPd = 38% with 0.01 M Aliquat 336 and 0.4 M TBP in kerosene in 3 steps of counter current extraction at A/O = 1 HCl concentration ↑ (>3 M) = EPd and EPt ↓ | SPd = 87 ÷ 100% with 0.001 M thiourea in 0.1 ÷ 0.5 M HCl | [5] |
349.4 mg/dm3 Pt, 58.9 mg/dm3 Rh and 6700.8 mg/dm3 Mg, pH 3.4 | 0.01 M Aliquat 336 in kerosene | Two-step counter current simulation: EPt = ~100%, ERh = 0% (A/O = 3.3) | SPt = ~99.9% with 0.5 M thiourea in 0.5 M HCl (O/A = 6) | [6] |
200 mg/dm3 of each Au(III), Pt(IV), Pd(II) in a mixture solution of 0.1 M HCl | 0.6 g/dm3 Aliquat 336 in benzene | EAu > 99%, EPt = 5%, EPd = 7% (A/O = 1) pH ↑ (up to 4.5) = EPd and EPt ↑ | I stripping step: SPd = SPt = ~100%, SAu = 0.13% with 1 M HNO3 II stripping step: SAu = 100% with 0.05 M thiourea in 0.1 M HCl | [7] |
A model solution similar to leachate from end-of-life autocatalyst: 10.5 mg/dm3 Pt(IV), 24.0 mg/dm3 Pd(II), 6.81 mg/dm3 Rh(III) and impurities in 0.001 ÷ 6 M HCl | Pure ionic liquids: [A336][Cl], [A336][Br], [A336][I] | EAu = EPt = EPd = 100% with all the ILs HCl concentration ↑ (to 6 M) = ERh ↓ (to 20%) | I stripping step from [A336][I]: SPd = 89.8%, SRh = 4.25%, SAu~SPt < 1% with 1 M NH4OH II stripping step from [A336][I]: SAu = 100%, SPd~SPt~SRh < 10% with 1 M thiourea in 1 M HCl | [8] |
1514 mg/dm3 Pt(IV) and 178 mg/dm3 Rh(III), 1.6 mg/dm3 Fe(III) in HCl > 8.5 M | 0.05 M Cyanex 923 in kerosene or 0.07 M Cyanex 923 in toluene | EPt = 85%, EFe = 100%, ERh = 0% EPt = 40%, EFe = 100%, ERh = 0% | SPt = 100%, SFe = 0% with NaSCN solutions SPt = 100%, SFe = up to 60% with HCl solutions | [10] |
1.1 mM Pt(IV), 0.8 mM Pd(II), 0.6 mM Ru(III), 0.4 mM Rh(III) in 0.8 M HCl (total Cl− equal to 2.5 M) | 0.005 M Cyphos IL 101, Cyphos IL 102, Cyphos IL 104 in toluene | EPt~EPd > 95%, ERu = 55%, ERh < 15% (A/O = 1) | I stripping step from ILs: SPd = 69 ÷ 98.5% with 0.1 M thiourea in 0.5 M HCl II stripping step from ILs: SRu = 37.8% with 0.1 M KSCN, SPt = 69% with 1 M HNO3 | [11] |
HCl in the Feed, M | DPd(II) | |||
---|---|---|---|---|
After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | |
0.1 | 5.81 | >106 | 0.940 | 34.6 |
1 | 1.99 | >106 | 0.270 | 5.82 |
3 | 0.81 | >106 | 0.071 | 6.41 |
EPd(II), % | ||||
0.1 | 83.7 | 100 | 48.5 | 97.2 |
1 | 66.5 | 100 | 21.4 | 85.3 |
3 | 43.9 | 96.1 | 6.60 | 86.5 |
HCl in the Feed, M | After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | ||||
---|---|---|---|---|---|---|---|---|
H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | |
0.1 | 0.118 | 0.0065 | 0.119 | 0.0055 | 0.121 | 0.0035 | 0.1205 | 0.0040 |
1 | 1.111 | 0.0170 | 1.081 | 0.0470 | 1.082 | 0.0460 | 1.087 | 0.0410 |
3 | 3.112 | 0.0175 | 2.995 | 0.1345 | 3.043 | 0.0950 | 3.045 | 0.0930 |
HCl in the Feed, M | DPt(IV) | |||
---|---|---|---|---|
After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | |
0.1 | 1.74 | 13.5 | 0.949 | 0.388 |
1 | 1.39 | >106 | 0.799 | 4.02 |
3 | 1.03 | >106 | 0.726 | 6.97 |
EPt(IV), % | ||||
0.1 | 62.2 | 93.8 | 48.7 | 27.9 |
1 | 58.0 | 99.7 | 44.4 | 80.1 |
3 | 50.4 | 100 | 42.0 | 87.5 |
HCl in the Feed, M | After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | ||||
---|---|---|---|---|---|---|---|---|
H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | |
0.1 | 0.120 | 0.0015 | 0.120 | 0.0015 | 0.120 | 0.0015 | 0.1195 | 0.0020 |
1 | 1.143 | 0.018 | 1.035 | 0.126 | 1.146 | 0.0150 | 1.1155 | 0.0455 |
3 | 3.118 | 0.058 | 3.118 | 0.058 | 2.974 | 0.1160 | 3.0720 | 0.0180 |
Extractant Concentration in the Organic Phase, M | D after Extraction with: | |||
---|---|---|---|---|
D3MI-PrCl | D3EI-PrCl | |||
Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | |
0.001 | 0.011 | 0.014 | 0.15 | 0.13 |
0.0025 | 0.63 | 0.190 | 1.31 | 1.10 |
0.005 | 5.82 | 4.02 | >106 | >106 |
0.01 | >106 | >106 | >106 | >106 |
0.02 | >106 | >106 | >106 | >106 |
0.03 | >106 | >106 | >106 | >106 |
Stripping Phases | Loaded Organic Phases | |||||||
---|---|---|---|---|---|---|---|---|
Eh3MI-PrCl | D3MI-PrCl | D3EI-PrCl | Eh4IA-PrCl | |||||
Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | |
0.1 M ammonia | - | - | (+/−) | (+/−) | (+/−) | (+/−) | - | - |
3 M HNO3 | + | - | (+/−) | (+/−) | 0 | 0 | + | 0 |
3 M HCl | - | + | - | - | 0 | 0 | 0 | + |
0.1 M thiourea in 0.5 M HCl | N/A | N/A | N/A | N/A | - | - | - | - |
HCl Concentration in the Feed, M | Percentage Stripping, % | |||
---|---|---|---|---|
Eh4IA-PrCl | D3EI-PrCl | |||
3 M HNO3 | 3 M HCl | 0.1 M Ammonia | ||
Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | |
0.1 | 11.8 | 18.6 | 15.5 | 94.6 |
1.0 | 6.3 | 31.5 | 29.8 | 89.8 |
3.0 | 4.5 | 46.0 | 40.2 | 85.9 |
Extractant Concentration, M | EPt(IV), % | EPd(II), % | DPt(IV) | DPd(II) | SFPt(IV)/Pd(II) |
---|---|---|---|---|---|
Eh3MI-PrCl | |||||
0.03 | 98.61 | 96.06 | 71.0 | 24.4 | 2.91 |
0.02 | 96.91 | 87.91 | 31.3 | 7.30 | 4.31 |
0.01 | 89.91 | 47.87 | 8.90 | 0.90 | 9.70 |
Eh4IA-PrCl | |||||
0.03 | 98.73 | 99.90 | 77.7 | 963 | 0.08 |
0.02 | 98.82 | 99.37 | 83.7 | 158 | 0.53 |
0.01 | 84.12 | 56.56 | 5.30 | 1.30 | 4.07 |
D3EI-PrCl | |||||
0.03 | 99.14 | 100.00 | 115 | 1.4 × 105 | 0.00 |
0.02 | 98.88 | 100.00 | 88.6 | 1.4 × 105 | 0.00 |
0.01 | 97.83 | 100.00 | 45.0 | 1.4 × 105 | 0.00 |
D3MI-PrCl | |||||
0.03 | 98.63 | 100.00 | 72.1 | 1.4 × 105 | 0.00 |
0.02 | 98.22 | 100.00 | 55.2 | 1.4 × 105 | 0.00 |
0.01 | 98.80 | 100.00 | 82.4 | 1.4 × 105 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiecka, Z.; Rzelewska-Piekut, M.; Wojciechowska, I.; Wieszczycka, K.; Regel-Rosocka, M. Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials 2021, 14, 285. https://doi.org/10.3390/ma14020285
Wiecka Z, Rzelewska-Piekut M, Wojciechowska I, Wieszczycka K, Regel-Rosocka M. Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials. 2021; 14(2):285. https://doi.org/10.3390/ma14020285
Chicago/Turabian StyleWiecka, Zuzanna, Martyna Rzelewska-Piekut, Irmina Wojciechowska, Karolina Wieszczycka, and Magdalena Regel-Rosocka. 2021. "Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems" Materials 14, no. 2: 285. https://doi.org/10.3390/ma14020285
APA StyleWiecka, Z., Rzelewska-Piekut, M., Wojciechowska, I., Wieszczycka, K., & Regel-Rosocka, M. (2021). Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials, 14(2), 285. https://doi.org/10.3390/ma14020285