Cooling Performance and Thermal Radiation Model of Asphalt Mixture with Modified Infrared Powder
Abstract
:1. Introduction
2. Materials and Experimental Tests
2.1. Physical Properties Tests of Materials
2.1.1. Mineral Apparent Density Test
2.1.2. Infrared Emissivity Test
2.1.3. Asphalt Slurry Cooling Performance Test
2.2. Infrared Thermal Radiation Test
2.3. X-ray Diffraction Test
2.4. Scanning Electron Microscopy Test
2.5. Emissivity of Common Materials
3. Thermal Radiation Model
3.1. Establishment of the Thermal Radiation Model
3.2. Boundary Conditions of the Thermal Radiation Model
4. Thermal Radiation Model Analysis
4.1. Influence of Infrared Radiation Transmissivity
4.2. Influence of Shortwave Absorptivity and Longwave Emissivity
4.3. Cooling Performance Analysis
5. Conclusions
- X-ray diffraction tests show that the main components of MIRP are metal oxides and nonmetallic oxides, in which the content of silicon oxide and iron oxide are 35.32% and 34.64%, respectively, and the proportion is much higher than that of other components. The existence of these materials helps improve infrared emissivity of the asphalt pavement.
- The SEM test shows that compared with the limestone mineral powder, the MIRP has smaller particles and less agglomeration. Compared with limestone mineral powder asphalt mortar, the asphalt mortar with MIRP has a more compact structure and more uniform distribution, enhancing the overall structural performance of the mixture.
- The addition of MIRP can improve the infrared radiation transmissivity of asphalt pavement, and the asphalt pavement equilibrium temperature decreased with increased infrared radiation transmissivity of the asphalt mixture. A 1% increase in infrared radiation transmissivity results in a 0.379 °C decrease in asphalt pavement equilibrium temperature.
- The addition of MIRP can improve the longwave emissivity of asphalt pavement, and the equilibrium temperature of asphalt pavement decreases as the percentage of longwave emissivity of the pavement increases. A 1% increase in the longwave emissivity results in a 0.1437 °C decrease in asphalt pavement equilibrium temperature.
- The addition of MIRP can decrease the shortwave absorptivity of asphalt pavement, and the asphalt pavement equilibrium temperature decreased with decreased shortwave absorptivity of the pavement. A 1% decrease in the shortwave absorptivity results in a 0.3268 °C decrease in asphalt pavement equilibrium temperature.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirani-Bidabadi, N.; Nasrabadi, T.; Faryadi, S.; Larijani, A.; Roodposhti, M.S. Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustain. Cities Soc. 2019, 45, 686–692. [Google Scholar] [CrossRef]
- Fei, W.; Zhao, S.Q. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total. Environ. 2019, 664, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Łukasz, M.; Judycki, J.; Dołżycki, B. Comparison of Elastic and Viscoelastic Analysis of Asphalt Pavement at High Temperature. Procedia Eng. 2017, 172, 746–753. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Robaa, S.M. Some aspects of the urban climates of Greater Cairo Region, Egypt. Int. J. Clim. 2013, 33, 3206–3216. [Google Scholar] [CrossRef]
- Benz, S.A.; Bayer, P.; Blum, P. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany. Sci. Total. Environ. 2017, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Matthews, H.D. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Gürü, M.; Çubuk, M.K.; Arslan, D.; Farzanian, S.A.; Bilici, I. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. J. Hazard. Mater. 2014, 279, 302–310. [Google Scholar] [CrossRef]
- Qin, Y.; Hiller, J.E. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014, 85, 389–399. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A.; Shen, S.-L.; Chindaprasirt, P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 2018, 341, 257–267. [Google Scholar] [CrossRef]
- Pourshamsmanzouri, T. Pavement Temperature Effects on Overall Urban Heat Island; Arizona State University, ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2013. [Google Scholar]
- Wu, X.R.; Li, S.X. Technical Research on Application of Warm Mix Flame-Retardant Noise Reduction Asphalt Mixture. Appl. Mech. Mater. 2015, 723, 435–439. [Google Scholar] [CrossRef]
- Ding, N.; Xie, J.G.; Liang, L.L.; Hu, Y.; Xiao, H.; Wang, Y.J. Study on Thermal Radiation Properties Enhancement of the Lower-Heat-Storage Asphalt Concrete. Appl. Mech. Mater. 2013, 316, 968–974. [Google Scholar] [CrossRef]
- Guo, P.; Wu, D.J.; Huang, J.; Zhang, J. Study on the High-Temperature Warning of Asphalt Pavement. In Proceedings of the International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010. [Google Scholar] [CrossRef]
- Hendel, M.; Pacheco-Torgal, F.; Amirkhanian, S.; Wang, H.; Schlangen, E. Cool Pavements, Eco-Efficient Pavement Construction Materials; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2020; Volume 6, pp. 97–125. [Google Scholar] [CrossRef]
- Reder, A.; Rianna, G.; Mercogliano, P.; Castellari, S. Parametric investigation of Urban Heat Island dynamics through TEB 1D model for a case study: Assessment of adaptation measures. Sustain. Cities Soc. 2018, 39, 662–673. [Google Scholar] [CrossRef]
- Ferrari, A.; Kubilay, A.; Derome, D.; Carmeliet, J. The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation. Urban Clim. 2020, 31, 100534. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Constr. Build. Mater. 2019, 228, 116818. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Dong, Q.; Yao, L.; Ma, X. Investigation of the internal structure change of two-layer asphalt mixtures during the wheel tracking test based on 2D image analysis. Constr. Build. Mater. 2019, 209, 66–76. [Google Scholar] [CrossRef]
- Military Specification, MIL-E-46117A(MR), Enamel, Alkyd, Lusterless, Solar Heat Reflecting, Olive Drab. 6 October 1970. Available online: http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-E/MIL-E-46117A_NOTICE-1_40479/ (accessed on 18 November 2020).
- Liu, L.; Han, A.; Ye, M.; Feng, W. The evaluation of thermal performance of cool coatings colored with high near-infrared reflective nano-brown inorganic pigments: Magnesium doped ZnFe2O4 compounds. Sol. Energy 2015, 113, 48–56. [Google Scholar] [CrossRef]
- Yan, J.F.; Zhang, F.J.; Ruan, X.F.; Xu, M.Z.; Zhang, Z.Y.; Zhao, W.; Yun, J.N. Synthesis, Photoluminescence and Infrared Emissivity of SnO2 Nanocrystalline Thin Films. Adv. Mater. Res. 2015, 1118, 55–61. [Google Scholar] [CrossRef]
- King, J.I.F. A potential-theory formulation of radiant-heat transfer. Q. J. R. Meteorol. Soc. 2007, 81, 414–417. [Google Scholar] [CrossRef]
- Wang, X.A.; Mei, F.M. Radiation Heat Transfer; Tsinghua University Press: Beijing, China, 2007. [Google Scholar]
- Weller, J.; Thornes, J.E. An investigation of winter nocturnal air and road surface temperature variation in the West Midlands, UK under different synoptic conditions. Meteorol. Appl. 2001, 8, 461–474. [Google Scholar] [CrossRef]
- Lautenberger, C.; Tien, C.L.; Lee, K.Y.; Stretton, A.J. Radiation Heat Transfer; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Gröbner, J.; Wacker, S.; Vuilleumier, L.; Kampfer, N. Effective atmospheric boundary layer temperature from longwave radiation measurements. J. Geophys. Res. Space Phys. 2009, 114, 19116. [Google Scholar] [CrossRef] [Green Version]
- Moddel, G. Fractional bandwidth normalization for optical spectra with application to the solar blackbody spectrum. Appl. Opt. 2001, 40, 413. [Google Scholar] [CrossRef]
- Xing, H.; Chong, W.; Sha, Y.; Lv, W. Model for correcting global solar irradiance measured with rotating shadowband radiometer. Opt. Eng. 2012, 51, 046001. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, H.; Li, S.; Chen, Y.; Zhang, F.; Li, M. RETRACTED: Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis. ISPRS J. Photogramm. Remote. Sens. 2018, 138, 12–29. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Han, K.-S.; Cho, J.; Lee, C.S.; Yoon, H.-J.; Yeom, J.-M.; Ou, M.-L. Estimating midday near-surface air temperature by weighted consideration of surface and atmospheric moisture conditions using COMS and SPOT satellite data. Int. J. Remote Sens. 2015, 36, 3503–3518. [Google Scholar] [CrossRef]
- Rohsenow, W.M. Heat Transfer Application Manual; Science Press: Beijing, China, 1992. [Google Scholar]
- Lin, B.-R. Research on the Effect of Greening on Outdoor Thermal Environment. Ph.D. Thesis, Tsinghua University, Beijing, China, 2004. [Google Scholar]
- Schwartz, C.W.; Li, R.; Ceylan, H.; Kim, S.; Gopalakrishnan, K. Global Sensitivity Analysis of Mechanistic–Empirical Performance Predictions for Flexible Pavements. Transp. Res. Rec. J. Transp. Res. Board 2013, 2368, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, H.; Zhu, H. Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl. Therm. Eng. 2017, 113, 739–748. [Google Scholar] [CrossRef]
Sieve Size (mm) | Quality in Water (g) | Dry Quality (g) | Drying Quality (g) | Apparent Relative Density (g/cm3) | Surface Dry Relative Density (g/cm3) | Relative Density of Bulk Volume (g/cm3) |
---|---|---|---|---|---|---|
4.75 | 633.2 | 1002.1 | 999.6 | 2.728166 | 2.716454 | 2.709677 |
9.5 | 633.7 | 1001.8 | 999.4 | 2.732841 | 2.721543 | 2.715023 |
13.2–16 | 633 | 1001.1 | 999.8 | 2.725736 | 2.719641 | 2.71611 |
Sieve Size (mm) | Fine Aggregates Quality (g) | Cylinder Quality (g) | Cylinder + Water (g) | Cylinder + Water + Fine Aggregates (g) | Apparent Relative Density (g/cm3) |
---|---|---|---|---|---|
4.75–2.36 | 238 | 365.8 | 861.7 | 1011.2 | 2.689266 |
2.36–1.18 | 300 | 471.1 | 1454.4 | 1642.1 | 2.671416 |
1.18–0.6 | 300 | 471 | 1455.5 | 1642.9 | 2.664298 |
0.6–0.3 | 200 | 471.1 | 1456.7 | 1581.6 | 2.663116 |
0.3–0.15 | 100 | 103.3 | 449.5 | 511.9 | 2.659574 |
0.15–0.075 | 100 | 103.3 | 449.8 | 512.1 | 2.65252 |
limestone mineral powder | 160 | 103.3 | 450.1 | 549.5 | 2.640264 |
MIRP | 100 | 103.4 | 450.1 | 519.8 | 3.30033 |
Sample Name | Normal Specific Emissivity Value | |||||||
---|---|---|---|---|---|---|---|---|
MIRP | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 |
0.92 | 0.94 | 0.93 | 0.94 | 0.94 | 0.95 | 0.94 | 0.93 |
Sample Proportions | 0% | 25% | 50% | 75% | 100% |
---|---|---|---|---|---|
asphalt (g) | 20 | 20 | 20 | 20 | 20 |
limestone mineral powder (g) | 40 | 30 | 20 | 10 | 0 |
MIRP (g) | 0 | 10 | 20 | 30 | 40 |
Sieve Size (mm) | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | Mineral Powder | Infrared Powder |
---|---|---|---|---|---|---|---|---|---|---|---|
Type I | 100 | 95.0 | 63.0 | 27.0 | 21.0 | 19.0 | 16.0 | 14.0 | 13.0 | 12 | 0 |
Type II | 100 | 95.0 | 63.0 | 27.0 | 21.0 | 19.0 | 16.0 | 14.0 | 13.0 | 9 | 3 |
Type III | 100 | 95.0 | 63.0 | 27.0 | 21.0 | 19.0 | 16.0 | 14.0 | 13.0 | 6 | 6 |
Type IV | 100 | 95.0 | 63.0 | 27.0 | 21.0 | 19.0 | 16.0 | 14.0 | 13.0 | 3 | 9 |
Type V | 100 | 95.0 | 63.0 | 27.0 | 21.0 | 19.0 | 16.0 | 14.0 | 13.0 | 0 | 12 |
H (cm) | 20 | 22 | 25 | 30 | 23.5 |
---|---|---|---|---|---|
T (°C) | 74 | 71 | 64 | 52 | 68 |
Type of Material | SiO2 | Fe2O3 | TiO2 | MnO | Al2O3 | Na2O | CaO | MgO | V2O5 | Cr2O3 | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
Mass ratio (%) | 35.83 | 34.64 | 8.51 | 7.43 | 3.35 | 2.89 | 2.71 | 1.85 | 0.91 | 0.82 | 0.64 |
Wavelengths | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 |
---|---|---|---|---|---|---|---|---|
Infrared emission rate | 0.92 | 0.94 | 0.93 | 0.94 | 0.94 | 0.95 | 0.94 | 0.93 |
Type of Material | Emissivity | Type of Material | Emissivity | Type of Material | Emissivity |
---|---|---|---|---|---|
Al2O3 | 0.88 | Cr2O3 | 0.79 | ZnO | 0.83 |
CeO2 | 0.79 | Co2O3 | 0.81 | SiO2 | 0.83 |
Fe2O3 | 0.74 | MgO | 0.8 | Mullite | 0.82 |
Sb2O3 | 0.87 | SiC | 0.81 | Sericite | 0.8 |
ZrO2 | 0.82 | TiO2 | 0.82 | Kaolin | 0.79 |
Te/K | 𝛼s = 0.8 | 𝛼s = 0.85 | 𝛼s = 0.9 | 𝛼s = 0.95 |
---|---|---|---|---|
ε1 = 0.8 | 336.07 | 337.78 | 339.48 | 341.18 |
ε1 = 0.85 | 335.36 | 337.04 | 338.70 | 340.36 |
ε1 = 0.9 | 334.67 | 336.31 | 337.95 | 339.57 |
ε1 = 0.95 | 334.02 | 335.63 | 337.23 | 338.82 |
ε1 = 1.0 | 333.40 | 334.98 | 336.54 | 338.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Liu, Y.; Xie, J.; Yang, Z. Cooling Performance and Thermal Radiation Model of Asphalt Mixture with Modified Infrared Powder. Materials 2021, 14, 245. https://doi.org/10.3390/ma14020245
Gao L, Liu Y, Xie J, Yang Z. Cooling Performance and Thermal Radiation Model of Asphalt Mixture with Modified Infrared Powder. Materials. 2021; 14(2):245. https://doi.org/10.3390/ma14020245
Chicago/Turabian StyleGao, Lei, Yanping Liu, Jianguang Xie, and Zhaoxu Yang. 2021. "Cooling Performance and Thermal Radiation Model of Asphalt Mixture with Modified Infrared Powder" Materials 14, no. 2: 245. https://doi.org/10.3390/ma14020245
APA StyleGao, L., Liu, Y., Xie, J., & Yang, Z. (2021). Cooling Performance and Thermal Radiation Model of Asphalt Mixture with Modified Infrared Powder. Materials, 14(2), 245. https://doi.org/10.3390/ma14020245