Influence of the Iron as a Dopant on the Refractive Index of WO3
Abstract
:1. Introduction
2. Material and Methods
Thin Film Investigation Methods
3. Results and Discussions
3.1. X-ray Measurements
3.2. SEM Measurements
3.3. Refractive Index
3.4. Optical Band Gap Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lethy, K.J.; Beena, D.; Kumar, R.V.; Pillai, V.M.; Ganesan, V.; Sathe, V. Structural, optical and morphological studies on laser ablated nanostructured WO3 thin films. Appl. Surf. Sci. 2008, 254, 2369–2376. [Google Scholar] [CrossRef]
- Datta, N.; Ramgir, N.; Kaur, M.; Roy, M.; Bhatt, R.; Kailasaganapathi, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Vacuum deposited WO3 thin films based sub-ppm H2S sensor. Mater. Chem. Phys. 2012, 134, 851–857. [Google Scholar] [CrossRef]
- Shen, X.; Wang, G.; Wexler, D. Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays. Sens. Actuators B Chem. 2009, 143, 325–332. [Google Scholar] [CrossRef]
- Patel, K.J.; Panchal, C.J.; Kheraj, V.A.; Desai, M.S. Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films. Mater. Chem. Phys. 2009, 114, 475–478. [Google Scholar] [CrossRef]
- Qin, Y.; Hu, M.; Zhang, J. Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sens. Actuators B Chem. 2010, 150, 339–345. [Google Scholar] [CrossRef]
- Cho, M.-H.; Park, S.A.; Yang, K.-D.; Lyo, I.W.; Jeong, K.; Kang, S.K.; Ko, D.-H.; Kwon, K.W.; Ku, J.H.; Choi, S.Y.; et al. Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment. J. Vac. Sci. Technol. B 2004, 22, 1084. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef] [Green Version]
- Brezesinski, T.; Rohlfing, D.F.; Sallard, S.; Antonietti, M.; Smarsly, B.M. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small 2006, 2, 1203–1211. [Google Scholar] [CrossRef]
- Bechinger, C.; Bullock, J.N.; Zhang, J.-G.; Tracy, C.E.; Benson, D.K.; Deb, S.K.; Branz, H.M. Low-voltage electrochromic device for photovoltaic-powered smart windows. J. Appl. Phys. 1996, 80, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Foord, D.T.; Scipioni, L. Easy growth of undoped and doped tungsten oxide nanowires with high purity and orientation. Nanotechnology 2005, 16, 10–14. [Google Scholar] [CrossRef]
- Yin, M.; Yu, L.; Liu, S. Synthesis of Ag quantum dots sensitized WO3 nanosheets and their enhanced acetone sensing properties. Mater. Lett. 2017, 186, 66–69. [Google Scholar] [CrossRef]
- Miu, D.; Birjega, R.; Viespe, C. Surface acoustic wave hydrogen sensors based on nanostructured Pd/WO3 bilayers. Sensors 2018, 18, 3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palla-Papavlu, A.; Filipescu, M.; Schneider, C.W.; Antohe, S.; Ossi, P.M.; Radnóczi, G.; Dinescu, M.; Wokaun, A.; Lippert, T. Direct laser deposition of nanostructured tungsten oxide for sensing applications. J. Phys. D Appl. Phys. 2016, 49, 205101. [Google Scholar] [CrossRef]
- Osiac, M.; Cioatera, N.; Jigau, M. Structural, Morphological and Optical Properties of Iron Doped WO3 Thin Film Prepared by Pulsed Laser Deposition. Coatings 2020, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Osiac, M.; Cioatera, N.; Udristioiu, M.-T. The systemization of the tungsten oxide thin film used for gas sensor applications. In Proceedings of the AIP Conference Proceedings, Timisoara, Romania, 30 May 2019; Volume 2071, p. 040015. [Google Scholar]
- Udristiouiu, M.-T.; Osiac, M. Au-incorporated in tungsten trioxide obtained by pulsed laser deposition. In Proceedings of the AIP Conference Proceedings, Timisoara, Romania, 20 May 2020; Volume 2218, p. 030012. [Google Scholar]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222. [Google Scholar] [CrossRef]
- Manifacier, J.C.; Gasiot, J.; Fillard, J.P. A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film. J. Phys E Sci. Instrum. 1976, 9, 1002–1004. [Google Scholar] [CrossRef]
- Poelman, D.; Smet, P.F. Methods for the determination of the optical constants of thin films from single transmission measurements: A critical review. J. Phys. D Appl. Phys. 2003, 36, 1850–1857. [Google Scholar] [CrossRef]
- Gonzalez-Leal, J.-M.; Prieto-Alcon, R.; Angel, J.-A.; Minkov, D.A.; Marquez, E. Influence of substrate absorption on the optical and geometrical characterization of thin dielectric films. Appl. Optics 2002, 41, 7300–7308. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structures, Properties, Reactions, Occurences and Uses, 2nd ed.; WILEY-VCH: Weinheim, Germany, 2003; pp. 253–296. [Google Scholar]
- Tirca, I.; Boerasu, I.; Radu, M.-S.; Osiac, M. Refractive index of WO3 thin films grown under various temperatures determined by the Swanepoel method. Phys. B 2021, accepted. [Google Scholar]
- Lethy, K.J.; Beena, D.; Kumar, R.V.; Pillai, V.P.M.; Ganesan, V.; Sathe, V.; Phase, D.M. Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl. Phys. A 2008, 91, 637–649. [Google Scholar] [CrossRef]
- Ouni, B.; Boukhachem, A.; Dabbous, S.; Amlouk, A.; Boubaker, K.; Amlouk, M. Some transparent semi-conductor metal oxides: Comparative investigations in terms of Wemple–DiDomenico parameters, mechanical performance and Amlouk–Boubaker opto-thermal expansivity. Mater. Sci. Semicond. Process. 2010, 13, 281–287. [Google Scholar] [CrossRef]
- Sharma, P.; Katyal, S.C. Optical study of Ge10Se90−xTex glassy semiconductors. Thin Solid Film. 2007, 515, 7966–7970. [Google Scholar] [CrossRef]
WO3 + 2% Fe onto Sapphire Substrate, T = 600 °C, 4 h Deposition Time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
λ | Cauchy Dispersion | |||||||||
435 | 0.782 | 0.63 | 1.708 | 2.34 | 5.55 | 5 | 463.95 | 2.35 | 2.26 | |
457 | 0.831 | 0.73 | 1.704 | 2.09 | 4.71 | 4.5 | 491.61 | 2.22 | 2.24 | |
506 | 0.968 | 0.76 | 1.685 | 2.28 | 500.75 | 4.64 | 4 | 443.84 | 2.19 | 2.18 |
562 | 0.97 | 0.803 | 1.679 | 2.15 | 3.95 | 3.5 | 455.93 | 2.13 | 2.14 | |
647 | 0.98 | 0.812 | 1.672 | 2.14 | 529.54 | 3.41 | 3 | 452.50 | 2.10 | 2.10 |
758 | 0.992 | 0.824 | 1.667 | 2.12 | 2.89 | 2.5 | 444.83 | 2.05 | 2.06 | |
943 | 0.993 | 0.882 | 1.663 | 1.97 | 2.15 | 2 | 477.54 | 2.04 | 2.02 | |
, | ||||||||||
WO3 + 2% Fe onto Sapphire Substrate, T = 700 °C, 4 h Deposition Time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
λ | Cauchy Dispersion | |||||||||
454 | 0.737 | 0.589 | 1.7 | 2.38 | 5.50 | 5 | 475.33 | 2.32 | 2.22 | |
473 | 0.807 | 0.719 | 1.69 | 2.04 | 414.4 | 4.53 | 4.5 | 519.2 | 2.18 | 2.19 |
529 | 0.91 | 0.766 | 1.68 | 2.14 | 637.27 | 4.24 | 4 | 493.47 | 2.17 | 2.14 |
585 | 0.941 | 0.808 | 1.67 | 2.07 | 548.88 | 3.71 | 3.5 | 493.1 | 2.10 | 2.11 |
675 | 0.977 | 0.818 | 1.67 | 2.12 | 531.17 | 3.29 | 3 | 477.41 | 2.07 | 2.07 |
792 | 0.977 | 0.835 | 1.66 | 2.06 | 486.16 | 2.73 | 2.5 | 479.35 | 2.03 | 2.03 |
981 | 0.988 | 0.84 | 1.66 | 2.07 | 2.21 | 2 | 473.15 | 2.01 | 2.00 | |
Temperatures (°C) | Layer | Element | Weight % | Atomic % | Intensity | Errors % |
---|---|---|---|---|---|---|
600 °C | WO3 + 2%Fe | O (K) | 16.86 | 69.86 | 143.59 | 6.14 |
Fe (L) | 0.19 | 0.23 | 0.62 | 66.09 | ||
W (M) | 82.95 | 29.91 | 266.03 | 3.34 | ||
680 °C | O (K) | 17.08 | 70.29 | 144.76 | 6.16 | |
Fe (L) | 0.03 | 0.03 | 0.09 | 99.99 | ||
W (M) | 82.89 | 29.68 | 264.33 | 3.36 | ||
600 °C | WO3 | O (K) | 17.36 | 70.70 | 77.31 | 6.94 |
W(M) | 82.64 | 29.30 | 138.36 | 4.09 | ||
660 °C | O (K) | 17.49 | 70.90 | 76.34 | 6.94 | |
W(M) | 82.51 | 29.10 | 135.21 | 4.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osiac, M.; Boerasu, I.; Radu, M.-S.; Jigau, M.; Tirca, I. Influence of the Iron as a Dopant on the Refractive Index of WO3. Materials 2021, 14, 5845. https://doi.org/10.3390/ma14195845
Osiac M, Boerasu I, Radu M-S, Jigau M, Tirca I. Influence of the Iron as a Dopant on the Refractive Index of WO3. Materials. 2021; 14(19):5845. https://doi.org/10.3390/ma14195845
Chicago/Turabian StyleOsiac, Mariana, Iulian Boerasu, Madalin-Stefan Radu, Maria Jigau, and Ion Tirca. 2021. "Influence of the Iron as a Dopant on the Refractive Index of WO3" Materials 14, no. 19: 5845. https://doi.org/10.3390/ma14195845