Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy
Abstract
:1. Introduction
2. Theory and Method
3. Results
3.1. Photo-Responsive LC
3.2. Dye-Doped LC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitov, M. Cholesteric Liquid Crystals in Living Matter. Soft Matter 2017, 13, 4176–4209. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.E.; Nelson, K.F.; Adams, J.E.; Dir, G.A. U.V.Imaging with Nematic Chlorostilbenes. J. Electrochem. Soc. 1974, 121, 1667. [Google Scholar] [CrossRef]
- Ichimura, K.; Suzuki, Y.; Seki, T.; Hosoki, A.; Aoki, K. Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by Command Surfaces Modified with an Azobenzene Monolayer. Langmuir 1988, 4, 1214–1216. [Google Scholar] [CrossRef]
- Ikeda, T.; Miyamoto, T.; Kurihara, S.; Tazuke, S. Effect of Structure of Photoresponsive Molecules on Photochemical Phase-Transition of Liquid-Crystals.4. Photochemical Phase-Transition Behaviors of Photochromic Azobenzene Guest Polymer Liquid-Crystal Host Mixtures. Mol. Cryst. Liq. Cryst. 1990, 188, 223–233. [Google Scholar] [CrossRef]
- Ikeda, T.; Miyamoto, T.; Kurihara, S.; Tazuke, S. Effect of Structure of Photoresponsive Molecules on Photochemical Phase-Transition of Liquid-Crystals.3. Photochemical Phase-Transition Behaviors of Photochromic Azobenzene Guest Ester Host Mixtures. Mol. Cryst. Liq. Cryst. 1990, 188, 207–222. [Google Scholar]
- Ikeda, T.; Miyamoto, T.; Kurihara, S.; Tsukada, M.; Tazuke, S. Effect of Structure of Photoresponsive Molecules on Photochemical Phase-Transition of Liquid-Crystals.2. Photochemical Phase-Transition Behaviors of Photochromic Guest Host Mixtures. Mol. Cryst. Liq. Cryst. 1990, 182, 373–385. [Google Scholar] [CrossRef]
- Ikeda, T.; Miyamoto, T.; Kurihara, S.; Tsukada, M.; Tazuke, S. Effect of Structure of Photoresponsive Molecules on Photochemical Phase-Transition of Liquid-Crystals.1. Synthesis and Thermotropic Properties of Photochromic Azobenzene Derivatives. Mol. Cryst. Liq. Cryst. 1990, 182, 357–371. [Google Scholar] [CrossRef]
- Yu, Y.L.; Nakano, M.; Ikeda, T. Directed Bending of a Polymer Film by Light—Miniaturizing a Simple Photomechanical System Could Expand Its Range of Applications. Nature 2003, 425, 145. [Google Scholar] [CrossRef]
- Gelebart, A.H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E.W.; Selinger, R.L.B.; Broer, D.J. Making Waves in a Photoactive Polymer Film. Nature 2017, 546, 632–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Photocontrol of Fluid Slugs in Liquid Crystal Polymer Microactuators. Nature 2016, 537, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Samitsu, S.; Takanishi, Y.; Yamamoto, J. Molecular Manipulator Driven by Spatial Variation of Liquid-Crystalline Order. Nat. Mater. 2010, 9, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.-Y.; Yamamoto, J. Light-Driven Modulation of Scalar Order Parameter for High Spatial Resolution. EPL 2020, 131, 26001. [Google Scholar] [CrossRef]
- Khoo, I.C. Nonlinear Optics of Liquid Crystalline Materials. Phys. Rep. 2009, 471, 221–267. [Google Scholar] [CrossRef]
- Demeter, G.; Krimer, D.O. Light-Induced Dynamics in Nematic Liquid Crystals—a Fascinating World of Complex Nonlinear Phenomena. Phys. Rep. 2007, 448, 133–162. [Google Scholar] [CrossRef]
- Muenster, R.; Jarasch, M.; Zhuang, X.; Shen, Y.R. Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals. Phys. Rev. Lett. 1997, 78, 42–45. [Google Scholar] [CrossRef]
- Khoo, I.C.; Slussarenko, S.; Guenther, B.D.; Shih, M.-Y.; Chen, P.; Wood, W.V. Optically Induced Space-Charge Fields, Dc Voltage, and Extraordinarily Large Nonlinearity in Dye-Doped Nematic Liquid Crystals. Opt. Lett. 1998, 23, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Horii, K.; Sakai, K. Observation of Dynamic Behavior of Enhanced Optical Kerr Effect in Light-Absorbing Liquid. Phys. Rev. E 2006, 73, 11709. [Google Scholar] [CrossRef]
- Gibbons, W.M.; Shannon, P.J.; Sun, S.-T.; Swetlin, B.J. Surface-Mediated Alignment of Nematic Liquid Crystals with Polarized Laser Light. Nature 1991, 351, 49. [Google Scholar] [CrossRef]
- Macdonald, R.; Meindl, P.; Chilaya, G.; Sikharulidze, D. Photo-Excitation of Space Charge Fields and Reorientation of a Nematic Liquid Crystal of Discotic Molecules. Opt. Commun. 1998, 150, 195–200. [Google Scholar] [CrossRef]
- Tabiryan, N.V.; Umeton, C. Surface-Activated Photorefractivity and Electro-Optic Phenomena in Liquid Crystals. J. Opt. Soc. Am. B JOSAB 1998, 15, 1912–1917. [Google Scholar] [CrossRef]
- Khoo, I.C.; Shih, M.Y.; Wood, M.V.; Guenther, B.D.; Chen, P.H.; Simoni, F.; Slussarenko, S.S.; Francescangeli, O.; Lucchetti, L. Dye-Doped Photorefractive Liquid Crystals for Dynamic and Storage Holographic Grating Formation and Spatial Light Modulation. Proc. IEEE 1999, 87, 1897–1911. [Google Scholar] [CrossRef]
- Pagliusi, P.; Macdonald, R.; Busch, S.; Cipparrone, G.; Kreuzer, M. Nonlocal Dynamic Gratings and Energy Transfer by Optical Two-Beam Coupling in a Nematic Liquid Crystal Owing to Highly Sensitive Photoelectric Reorientation. J. Opt. Soc. Am. B JOSAB 2001, 18, 1632–1638. [Google Scholar] [CrossRef]
- Truong, T.V.; Xu, L.; Shen, Y.R. Dynamics of the Guest-Host Orientational Interaction in Dye-Doped Liquid-Crystalline Materials. Phys. Rev. E 2005, 72, 51709. [Google Scholar] [CrossRef] [PubMed]
- Lucchetti, L.; Gentili, M.; Simoni, F. Effects Leading to Colossal Optical Nonlinearity in Dye-Doped Liquid Crystals. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 422–430. [Google Scholar] [CrossRef]
- Statman, D.; Page, E.; Werner, V.; Lombardi, J.C. Photoinduced Reorientation of Nematic Liquid Crystals Doped with an Azo Dye: A Dynamic and Steady-State Study of Reorientation and Loss of Liquid Crystal Order. Phys. Rev. E 2007, 75, 21703. [Google Scholar] [CrossRef] [PubMed]
- Lucchetti, L.; Gentili, M.; Simoni, F. Colossal Optical Nonlinearity Induced by a Low Frequency External Electric Field in Dye-Doped Liquid Crystals. Opt. Express 2006, 14, 2236–2241. [Google Scholar] [CrossRef]
- Lucchetti, L.; Gentili, M.; Simoni, F. Pretransitional Enhancement of the Optical Nonlinearity of Thin Dye-Doped Liquid Crystals in the Nematic Phase. Appl. Phys. Lett. 2005, 86, 151117. [Google Scholar] [CrossRef]
- Khoo, I.C.; Lindquist, R.G.; Michael, R.R.; Mansfield, R.J.; LoPresti, P. Dynamics of Picosecond Laser-induced Density, Temperature, and Flow-reorientation Effects in the Mesophases of Liquid Crystals. J. Appl. Phys. 1991, 69, 3853–3859. [Google Scholar] [CrossRef]
- Yoon, B.; Kim, S.H.; Lee, I.; Kim, S.K.; Cho, M.; Kim, H. Dynamics of Nematic MBBA Film Induced by Transient Grating under a Strong Absorption Condition. J. Phys. Chem. B 1998, 102, 7705–7713. [Google Scholar] [CrossRef]
- Tsutsumi, O.; Shiono, T.; Ikeda, T.; Galli, G. Photochemical Phase Transition Behavior of Nematic Liquid Crystals with Azobenzene Moieties as Both Mesogens and Photosensitive Chromophores. J. Phys. Chem. B 1997, 101, 1332–1337. [Google Scholar] [CrossRef]
- Okamoto, K.; Hirota, N.; Terazima, M. Diffusion of Photochemically Generated Intermediate Radicals in Water−Ethanol Mixed Solvents. J. Phys. Chem. A 1998, 102, 3447–3454. [Google Scholar] [CrossRef]
- Jagodič, U.; Ryzhkova, A.V.; Muševič, I. Localised Opto-Thermal Response of Nematic Liquid Crystal to Laser Light. Liq. Cryst. 2019, 46, 1117–1126. [Google Scholar] [CrossRef]
- Ryzhkova, A.V.; Jagodič, U.; Muševič, I. Nanosecond Illumination Source for Speckle-Free Liquid Crystalmicroscopy. Liq. Cryst. 2021, 48, 491–510. [Google Scholar] [CrossRef]
- Chiba, T.; Inoue, H.; Kuwahara, S.; Katayama, K. Disorder/Reorientation Dynamics of 4-Methoxybenzylidene-4-n-Butylaniline Observed by Heterodyne Transient Grating Method. J. Photochem. Photobiol. Chem. 2013, 266, 1–5. [Google Scholar] [CrossRef]
- Sato, T.; Kuwahara, S.; Katayama, K. Host-Guest Molecular Interactions in the Phase Transition of Liquid Crystals. Mol. Cryst. Liq. Cryst. 2017, 644, 44–51. [Google Scholar] [CrossRef]
- Sato, T.; Katayama, K. Direct Measurement of the Propagation of the Phase-Transition Region of Liquid Crystals. Sci. Rep. 2017, 7, 44801. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Kato, D.; Nagasaka, K.-I.; Miyagawa, M.; Sohn, W.Y. Response of Liquid Crystals in the Pre-Transitional State. Mol. Cryst. Liq. Cryst. 2017, 657, 89–94. [Google Scholar] [CrossRef]
- Katayama, K.; Kato, D.; Nagasaka, K.-I.; Miyagawa, M.; Sohn, W.Y.; Lee, K.-W. Origin of Optical Nonlinearity of Photo-Responsive Liquid Crystals Revealed by Transient Grating Imaging. Sci. Rep. 2019, 9, 5754. [Google Scholar] [CrossRef]
- Katayama, K. Photo-Excited Charge Carrier Imaging by Time-Resolved Pattern Illumination Phase Microscopy. J. Chem. Phys. 2020, 153, 54201. [Google Scholar] [CrossRef]
- Koehl, R.M.; Adachi, S.; Nelson, K.A. Direct Visualization of Collective Wavepacket Dynamics. J. Phys. Chem. A 1999, 103, 10260–10267. [Google Scholar] [CrossRef]
- Simoni, F.; Lucchetti, L.; Lucchetta, D.E.; Francescangeli, O. On the Origin of the Huge Nonlinear Response of Dye-Doped Liquid Crystals. Opt. Express 2001, 9, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Rapis, E. On the Nonequilibrium Phase Transition in Protein. Tech. Phys. 2007, 52, 787–792. [Google Scholar] [CrossRef]
- Svoboda, R.; Málek, J. Amorphous-to-Crystalline Transition in Te-Doped Ge2Sb2Se5 Glass. J. Therm. Anal Calorim 2014, 117, 1073–1083. [Google Scholar] [CrossRef]
- Tsukuno, H.; Ozeki, K.; Kobayashi, I.; Hisatomi, O.; Mino, H. Flavin-Radical Formation in the Light-Oxygen-Voltage-Sensing Domain of the Photozipper Blue-Light Sensor Protein. J. Phys. Chem. B 2018, 122, 8819–8823. [Google Scholar] [CrossRef]
- Kao, P.-K.; VanSaders, B.J.; Durkin, M.D.; Glotzer, S.C.; Solomon, M.J. Anisotropy Effects on the Kinetics of Colloidal Crystallization and Melting: Comparison of Spheres and Ellipsoids. Soft Matter 2019, 15, 7479–7489. [Google Scholar] [CrossRef]
- Metaxas, A.E.; Panwar, V.; Olson, R.L.; Dutcher, C.S. Ionic Strength and Polyelectrolyte Molecular Weight Effects on Floc Formation and Growth in Taylor–Couette Flows. Soft Matter 2021, 17, 1246–1257. [Google Scholar] [CrossRef]
- Avramov, I.; Šesták, J. Generalized Kinetics of Overall Phase Transition Explicit to Crystallization. J. Therm Anal Calorim 2014, 118, 1715–1720. [Google Scholar] [CrossRef]
- Reed, L.J.; Berkson, J. The Application of the Logistic Function to Experimental Data. J. Phys. Chem. 1929, 33, 760–779. [Google Scholar] [CrossRef]
- Takenaka, Y.; Yamamoto, T. Light-Induced Displacement of a Microbead through the Thermal Expansion of Liquid Crystals. Soft Matter 2017, 13, 1116–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebihara, M.; Katayama, K. Anomalous Charge Carrier Decay Spotted by Clustering of a Time-Resolved Microscopic Phase Image Sequence. J. Phys. Chem. C 2020, 124, 23551–23557. [Google Scholar] [CrossRef]
- Shishido, A.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T.; Tamai, N. Rapid Optical Switching by Means of Photoinduced Change in Refractive Index of Azobenzene Liquid Crystals Detected by Reflection-Mode Analysis. J. Am. Chem. Soc. 1997, 119, 7791–7796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, N.; Katayama, K. Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy. Materials 2021, 14, 5491. https://doi.org/10.3390/ma14195491
Sato N, Katayama K. Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy. Materials. 2021; 14(19):5491. https://doi.org/10.3390/ma14195491
Chicago/Turabian StyleSato, Nozomi, and Kenji Katayama. 2021. "Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy" Materials 14, no. 19: 5491. https://doi.org/10.3390/ma14195491
APA StyleSato, N., & Katayama, K. (2021). Analysis of Molecular Disordering Processes in the Phase Transition of Liquid Crystals Observed by Patterned-Illumination Time-Resolved Phase Microscopy. Materials, 14(19), 5491. https://doi.org/10.3390/ma14195491