Regular-Type Liesegang Pattern of AgCl in a One-Dimensional System
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grzybowski, B.A.; Bishop, K.J.M.; Campbell, C.J.; Fialkowski, M.; Smoukov, S.K. Micro- and nanotechnology via reaction–diffusion. Soft Matter 2005, 1, 114–128. [Google Scholar] [CrossRef]
- Nasreddine, V.; Sultan, R. Propagating fronts and chaotic dynamics in Co(OH)2 Liesegang systems. J. Phys. Chem. 1999, 103, 2934–2940. [Google Scholar] [CrossRef]
- Shreif, Z.; Mandalian, L.; Abi-Haydar, A.; Sultan, R. Taming ring morphology in 2D Co(OH)2 Liesegang patterns. Phys. Chem. Chem. Phys. 2004, 6, 3461–3466. [Google Scholar] [CrossRef]
- Badr, L.; Mouss, Z.; Hariri, A.; Sultan, R. Band, target, and onion patterns in Co(OH)2 Liesegang systems. Phys. Rev. 2011, 83, 16109. [Google Scholar]
- Badr, L.; El-Rassy, H.; El-Joubeily, S.; Sultan, R. Morphology of a 2D Mg/NH4OH Liesegang pattern in zero, positive and negative radial electric field. Chem. Phys. Lett. 2010, 492, 35–39. [Google Scholar] [CrossRef]
- Al-Ghoul, M.; Ammar, M.; Al-Kaysi, R.O. Band propagation, scaling laws and phase transition in a precipitate system. I: Experimental study. J. Phys. Chem. 2012, 116, 4427–4437. [Google Scholar] [CrossRef] [PubMed]
- Bensemann, I.T.; Fialkowski, M.; Gryzybowski, B.A. Wet stamping of microscale periodic precipitation patterns. J. Phys. Chem. 2005, 109, 2774–2778. [Google Scholar] [CrossRef] [PubMed]
- Karam, T.; El-Rassy, H.; Sultan, R. Mechanism of revert spacing in a PbCrO4 Liesegang system. J. Phys. Chem. 2011, 115, 2994–2998. [Google Scholar] [CrossRef]
- Smoukov, S.K.; Lagzi, I.; Grzybowski, B.A. Independence of primary and secondary structures in periodic precipitation patterns. J. Phys. Chem. Lett. 2011, 2, 345–349. [Google Scholar] [CrossRef]
- Itatani, M.; Fang, Q.; Unoura, K.; Nabika, H. Programmable design of self-organized patterns through a precipitation reaction. J. Phys. Chem. 2020, 124, 8402–8409. [Google Scholar] [CrossRef]
- George, J.; Varghese, G. Intermediate colloidal formation and the varying width of periodic precipitation bands in reaction–diffusion systems. J. Colloid Interface Sci. 2005, 282, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Karam, T.; El-Rassy, H.; Zaknoun, F.; Moussa, Z.; Sultan, R. Liesegang banding and multiple precipitate formation in cobalt phosphate systems. Chem. Phys. Lett. 2012, 525, 54–59. [Google Scholar] [CrossRef]
- Nabika, H.; Sato, M.; Unoura, K. Liesegang patterns engineered by a chemical reaction assisted by complex formation. Langmuir 2014, 30, 5047–5051. [Google Scholar] [CrossRef]
- Matsue, M.; Itatani, M.; Fang, Q.; Shimizu, Y.; Unoura, K.; Nabika, H. Role of electrolyte in Liesegang pattern formation. Langmuir 2018, 34, 11188–11194. [Google Scholar] [CrossRef]
- Itatani, M.; Fang, Q.; Unoura, K.; Nabika, H. Role of nuclei in Liesegang pattern formation: Insights from experiment and reaction-diffusion simulation. J. Phys. Chem. 2018, 122, 3669–3676. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsui, J.; Unoura, K.; Nabika, H. Liesegang mechanism with a gradual phase transition. J. Phys. Chem. 2017, 121, 2495–2501. [Google Scholar] [CrossRef]
- Sato, D.; Itatani, M.; Unoura, K.; Matsui, J.; Nabika, H. Interplay between two radical species in the formation of periodic patterns during a polymerization reaction. Phys. Chem. Chem. Phys. 2020, 22, 21672–21677. [Google Scholar] [CrossRef] [PubMed]
- Nabika, H.; Itatani, M.; Lagzi, I. Pattern formation in precipitation reactions: The Liesegang phenomenon. Langmuir 2020, 36, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Büki, A.; Kárpáti-Smidroóczki, É.; Zrínyi, M. Computer simulation of regular Liesegang structures. J. Chem. Phys. 1995, 103, 10387–10392. [Google Scholar] [CrossRef]
- Kárpáti-Smidróczki, É.; Büki, A.; Zrínyi, M. Pattern forming precipitation in gels due to coupling of chemical reactions with diffusion. Colloid Polym. Sci. 1995, 273, 857–865. [Google Scholar] [CrossRef]
- Molnár, F., Jr.; Izsák, F.; Lagzi, I. Design of equidistant and revert type precipitation patterns in reaction–diffusion systems. Phys. Chem. Chem. Phys. 2008, 10, 2368–2373. [Google Scholar] [CrossRef]
- Kanniah, N.; Gnanam, F.D.; Ramasamy, P. A new spacing law for Liesegang rings. Proc. Indian Acad. Sci. 1984, 93, 801–811. [Google Scholar]
- Das, I.; Pushkarna, A.; Lall, R.S. Light induced periodic precipitation and crystal growth of PbCrO4. J. Cryst. Growth 1987, 82, 361–366. [Google Scholar] [CrossRef]
- Das, I.; Lall, R.S.; Pushkarna, A. Mechanism of periodic precipitation in an illuminated lead chromate system. J. Phys. Chem. 1987, 91, 747–750. [Google Scholar] [CrossRef]
- Das, I.; Pushkarna, A. Light induced periodic precipitation and chemical instability in lead chromate systems. J. Non-Equilib. Thermodyn. 1988, 13, 209–220. [Google Scholar] [CrossRef]
- Ripszám, M.; Nagy, Á.; Volford, A.; Izsak, F.; Lagzi, I. The Liesegang eyes phenomenon. Chem. Phys. Lett. 2005, 414, 384–388. [Google Scholar] [CrossRef]
- Ezzeddine, D.; El-Rassy, H.; Sultan, R. Surface and structural studies in a PbCrO4 Liesegang pattern with revert spacing. Chem. Phys. Lett. 2019, 734, 136735. [Google Scholar] [CrossRef]
- Kanniah, N.; Gnanam, F.D.; Ramasamy, P.; Laddha, G.S. Revert and direct type Liesegang phenomenon of silver iodide. J. Colloid Interface Sci. 1981, 80, 369–376. [Google Scholar] [CrossRef]
- Kanniah, N.; Gnanam, F.D.; Ramasamy, P. Revert and direct Liesegang phenomenon of silver iodide factors influencing the transuition point. J. Colloid Interface Sci. 1983, 94, 412–420. [Google Scholar] [CrossRef]
- Kullkarni, S.D.; Walimbe, P.C.; Ingulkar, R.B.; Lahase, J.D.; Kulkarni, P.S. Revert banding in one-dimensionao periodic precipitation of the (AgNO3 + KBr) system in agar gel. ACS Omega 2019, 4, 13061–13068. [Google Scholar] [CrossRef] [PubMed]
- Hadalgeri, B.G.; Kulkarni, P.S.; Nyayanit, N.V.; Kulkarni, S.D. Periodically precipitating patterns of AgCl through reaction-diffusion in agar gel: Role of supersaturation. Colloids Surf. 2020, 607, 125528. [Google Scholar] [CrossRef]
- Itatani, M.; Fang, Q.; Unoura, K.; Nabika, H. Effect of diffusion dimension on the geometry of precipitation patterns in the Liesegang phenomenon. ECS Trans. 2019, 88, 335–341. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, Y.; Yu, D.; Zhou, J. Stepwise evolution of AgCl microcrystals from octahedron into hexapod with mace pods and their visible light photocatalytic activity. Crystals 2019, 9, 401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, S.; Itatani, M.; Tsukada, K.; Nabika, H. Regular-Type Liesegang Pattern of AgCl in a One-Dimensional System. Materials 2021, 14, 1526. https://doi.org/10.3390/ma14061526
Sakamoto S, Itatani M, Tsukada K, Nabika H. Regular-Type Liesegang Pattern of AgCl in a One-Dimensional System. Materials. 2021; 14(6):1526. https://doi.org/10.3390/ma14061526
Chicago/Turabian StyleSakamoto, Shun, Masaki Itatani, Kanta Tsukada, and Hideki Nabika. 2021. "Regular-Type Liesegang Pattern of AgCl in a One-Dimensional System" Materials 14, no. 6: 1526. https://doi.org/10.3390/ma14061526
APA StyleSakamoto, S., Itatani, M., Tsukada, K., & Nabika, H. (2021). Regular-Type Liesegang Pattern of AgCl in a One-Dimensional System. Materials, 14(6), 1526. https://doi.org/10.3390/ma14061526