Toughness Behavior of SBR Acrylate Copolymer-Modified Pervious Concrete with Single-Sized Aggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Aggregate
2.1.3. Polymer Latex Preparation
2.2. Mix Design and Sample Preparation
2.3. Test Methods
3. Results
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Flexural Stiffness
3.4. Impact Resistance
3.5. Fracture Toughness
4. Discussion
4.1. Comprehensive Effect of Copolymer on Toughness of CMPC
4.2. Toxicity Evaluation of CMPC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlShareedah, O.; Nassiri, S. Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J. Clean. Prod. 2021, 288, 125095. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, M.; Wang, Q.; Yang, J.; Lin, T. Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Constr. Build. Mater. 2016, 124, 897–905. [Google Scholar] [CrossRef]
- Guan, X.; Wang, J.; Xiao, F. Sponge city strategy and application of pavement materials in sponge city. J. Clean. Prod. 2021, 303, 127022. [Google Scholar] [CrossRef]
- Chu, L.; Tang, B.; Fwa, T.F. Evaluation of functional characteristics of laboratory mix design of porous pavement materials. Constr. Build. Mater. 2018, 191, 281–289. [Google Scholar] [CrossRef]
- Gierasimiuk, P.; Wasilewska, M.; Gardziejczyk, W. A Comparative Study on Skid Resistance of Concrete Pavements Differing in Texturing Technique. Materials 2021, 14, 178. [Google Scholar] [CrossRef]
- Giustozzi, F. Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Constr. Build. Mater. 2016, 111, 502–512. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, T.; Lv, W. Study on the micro-mechanism and structure of unsaturated polyester resin modified concrete for bridge deck pavement. Constr. Build. Mater. 2021, 289, 123174. [Google Scholar] [CrossRef]
- Bahranifard, Z.; Farshchi Tabrizi, F.; Vosoughi, A.R. An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete. Constr. Build. Mater. 2019, 205, 175–185. [Google Scholar] [CrossRef]
- Kevern, J.T. Advancements in Pervious Concrete Technology. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2008. [Google Scholar]
- Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 2010, 24, 818–823. [Google Scholar] [CrossRef]
- Bonicelli, A.; Giustozzi, F.; Crispino, M. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Constr. Build. Mater. 2015, 91, 102–110. [Google Scholar] [CrossRef]
- Manan, A.; Ahmad, M.; Ahmad, F.; Basit, A.; Khan, M. Experimental Investigation of Compressive Strength and Infiltration Rate of Pervious Concrete by Fully Reduction of Sand. Civ. Eng. J. 2018, 4, 724. [Google Scholar] [CrossRef] [Green Version]
- Jibhenkar, K.B.; Vaidya, V.; Waghmare, S.S.; Singh, D.P. Experimental Investigation of Pervious concrete using Titanium Dioxide. Int. J. Adv. Res. Innov. Ideas Educ. 2015, 1, 486–496. [Google Scholar]
- Aoki, Y.; Sri Ravindrarajah, R.; Khabbaz, H. Properties of pervious concrete containing fly ash. Road Mater. Pavement Des. 2012, 13, 1–11. [Google Scholar] [CrossRef]
- Sofi, A. Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng. J. 2018, 9, 2691–2700. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.-J.; Liang, D. Mechanical properties of pervious cement concrete. J. Cent. South Univ. 2012, 19, 3329–3334. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Wang, X.; Zhou, W. Strength, fracture and fatigue of pervious concrete. Constr. Build. Mater. 2013, 42, 97–104. [Google Scholar] [CrossRef]
- Jiang, Y.; Ahmad, M.R.; Chen, B. Properties of magnesium phosphate cement containing steel slag powder. Constr. Build. Mater. 2019, 195, 140–147. [Google Scholar] [CrossRef]
- Benyahia, B.; Latifi, M.A.; Fonteix, C.; Pla, F.; Nacef, S. Emulsion copolymerization of styrene and butyl acrylate in the presence of a chain transfer agent.: Part 1: Modelling and experimentation of batch and fedbatch processes. Chem. Eng. Sci. 2010, 65, 850–869. [Google Scholar] [CrossRef] [Green Version]
- Łaźniewska-Piekarczyk, B. Examining the possibility to estimate the influence of admixtures on pore structure of self-compacting concrete using the air void analyzer. Constr. Build. Mater. 2013, 41, 374–387. [Google Scholar] [CrossRef]
- Zhang, P.; Wittmann, F.H.; Zhao, T.-J.; Lehmann, E.H.; Vontobel, P. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl. Eng. Des. 2011, 241, 4758–4766. [Google Scholar] [CrossRef]
- Lang, L.; Liu, N.; Chen, B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano-SiO2. Constr. Build. Mater. 2020, 230, 116971. [Google Scholar] [CrossRef]
- Karol, R.H. Chemical Grouting and Soil Stabilization, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Sunder, S. Development and Characterization of Grouts for Sealing and Sensing Applications. Ph.D. Thesis, University of Houston, Houston, TX, USA, 2012. [Google Scholar]
- Li, N.; Jin, Z.; Long, G.; Chen, L.; Fu, Q.; Yu, Y.; Zhang, X.; Xiong, C. Impact resistance of steel fiber-reinforced self-compacting concrete (SCC) at high strain rates. J. Build. Eng. 2021, 38, 102212. [Google Scholar] [CrossRef]
- Gunasekaran, M.; Thangavel, M.; Nemichandran, N.; Ravikumar, I.; Glarance, H.; Kothandapani, K. Impact Response and Strength Reliability of Green High Performance Fibre Reinforced Concrete Subjected to Freeze-thaw Cycles in NaCl Solution. Mater. Sci. 2017, 23. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chouw, N. The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading. Constr. Build. Mater. 2017, 134, 452–461. [Google Scholar] [CrossRef]
- Sangeetha, S.; Sakthieswaran, N.; Ganesh Babu, O. Effect of steel fibre on fracture toughness of concrete. Mater. Today Proc. 2021, 37, 1036–1040. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Y.; Chen, J. A novel chemo-mechanical model for fracture toughness of mortar under sulfate attack. Theor. Appl. Fract. Mech. 2020, 109, 102762. [Google Scholar] [CrossRef]
- Mindess, S.; Chen, L.; Morgan, D.R. Determination of the first-crack strength and flexural toughness of steel fiber-reinforced concrete. Adv. Cem. Based Mater. 1994, 1, 201–208. [Google Scholar] [CrossRef]
- Murali, G.; Asrani, N.P.; Ramkumar, V.R.; Siva, A.; Haridharan, M.K. Impact Resistance and Strength Reliability of Novel Two-Stage Fibre-Reinforced Concrete. Arab. J. Sci. Eng. 2019, 44, 4477–4490. [Google Scholar] [CrossRef]
- Abid, S.R.; Abdul Hussein, M.L.; Ali, S.H.; Kazem, A.a.F. Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr. Build. Mater. 2020, 244, 118321. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, Q.; Liu, R. Flexural Performance and Toughness Characteristics of Geogrid-Reinforced Pervious Concrete with Different Aggregate Sizes. Materials 2021, 14, 2295. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Ming, P. Fracture properties of rubber concrete under three-point bending. Hydro-Sci. Eng. 2021, 3, 31–40. (In Chinese) [Google Scholar] [CrossRef]
- Fan, X.; Chen, Y.; Hu, Y. Experimental Research on Mechanical Performance of Inorganic Polymer Rubber Concrete. Bull. Chin. Ceram. Soc. 2016, 35, 2701–2709. (In Chinese) [Google Scholar] [CrossRef]
- Zhijian, Y.; Ying, L.; Qingguo, Y.; Chaohua, Z.; Ruijin, T. Dry Shrinkage Properties of Polymer Lattice Porous Concrete of Pavement. J. Chong Qing Jiaotong Univ. Nat. Sci. 2009, 28, 534–536. [Google Scholar]
- Zhijian, Y. Porous Cement Road Surface Made from Polymer Modified Cement and a Construction Method Thereof. U.S. Patent 8470437B2, 25 June 2013. [Google Scholar]
- Zhijian, Y.A. Porous Concrete Road Surface Structure Made from Polymer Modified Cement and a Construction Method Thereof. Europe Patent 2083121B1, 7 February 2014. [Google Scholar]
- Hong, C.K.; Hwang, M.-J.; Ryu, D.-W.; Moon, H. Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 250–256. [Google Scholar] [CrossRef]
- Jianyi, G.; Feng, H.; Zhijian, Y.; Qingguo, Y.; Chaohua, Z. Influcence of Aggregates on Mechanical Properties of Polymer Lattice Porous Concrete. Highw. Eng. 2015, 40, 9–12. [Google Scholar]
- Chaohua, Z. Research on Steel Bridge Deck Polymer Skeleton Concrete Pavement with Anti-crack Enhancing Layer of FRP. Ph.D. Thesis, Chong Qing Jiaotong University, Chongqing, China, 2012. [Google Scholar]
- Yao, B.; Cheng, G.; Wang, X.; Cheng, C. Characterization of the stiffness of asphalt surfacing materials on orthotropic steel bridge decks using dynamic modulus test and flexural beam test. Constr. Build. Mater. 2013, 44, 200–206. [Google Scholar] [CrossRef]
- Lim, W.-Y.; Lee, D.; You, Y.-C. Cyclic loading tests on exposed column-base plate weak-axis connections of small-size steel structures. Eng. Struct. 2017, 153, 653–664. [Google Scholar] [CrossRef]
- Wang, T.-A.; Lee, D.; Chou, Y.-T. Flexural and compressive behaviours of sustainable AC/RC composite system with various Supplementary Materials. Int. J. Pavement Eng. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Tian, B. Testing Methods of Cement and Concrete for Highway Engineering: JTG 3420-2020; Ministry of Transport of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Miarka, P.; Seitl, S.; Horňáková, M.; Lehner, P.; Konečný, P.; Sucharda, O.; Bílek, V. Influence of chlorides on the fracture toughness and fracture resistance under the mixed mode I/II of high-performance concrete. Theor. Appl. Fract. Mech. 2020, 110, 102812. [Google Scholar] [CrossRef]
- Xu, S.; Reinhardt, H.W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. Int. J. Fract. 1999, 98, 151–177. [Google Scholar] [CrossRef]
- ASTM E1820-20b. Standard Test Method for Measurement of Fracture Toughness; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Rilem, T. Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 1985, 18, 287–290. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, T.; Lu, L. Study on the design limit state formula for cement concrete pavement. China Civil Eng. J. 2015, 48, 123–128. (In Chinese) [Google Scholar] [CrossRef]
- Ahmed Qadri, M.; Hameed, H.; Bhutta, O. Fresh and Hardened Properties of Styrene Butadiene Rubber (SBR) Modified Concrete. Eur. J. Eng. Res. Sci. 2020, 5. [Google Scholar] [CrossRef]
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | SiO3 | Analysis (%) |
---|---|---|---|---|---|---|
22.4 | 3.15 | 5.6 | 59.58 | 2.58 | 2.42 | Cement |
SBR | P1 | P2 | P3 | |
---|---|---|---|---|
Chemical family | Styrene–butadiene rubber | XG–6161 acrylate | XG–6001 acrylate | XG–2135 acrylate |
Solid content, wt % | 45 ± 1 | 56 ± 1 | 55 ± 1 | 50 ± 1 |
PH | 7 to 8.5 | 6.5 to 8 | 7 to 9 | 7 to 9 |
Density [kg/m3] | 1.20 to 1.22 | 1.08 to 1.10 | 1.10 to 1.12 | 1.18 to 1.20 |
Viscosity [MPa.s] | 1500 to 2500 | 500 to 1500 | 1000 to 2500 | 800 to 2500 |
Appearance | Milky white liquid emulsion | Milky white and grayish liquid emulsion | Milky white and grayish liquid emulsion | Milky white and grayish liquid emulsion |
Control Mixes | Mix ID | Control Mixes | Mix ID |
---|---|---|---|
100% Water | W | 80% SBR + 20% P2 | SP2_20% |
100% SBR | S | 70% SBR + 30%P2 | SP2_30% |
90% SBR + 10% P1 | SP1_10% | 90% SBR + 10% P3 | SP3_10% |
80% SBR + 20% P1 | SP1_20% | 80% SBR + 20%P3 | SP3_20% |
70% SBR + 30% P1 | SP1_30% | 70% SBR + 30% P3 | SP3_30% |
90% SBR + 10% P2 | SP2_10% |
Test Type | Specimen Size [mm] | Number of Scenarios | Number of Specimens |
---|---|---|---|
Compressive strength | 100 × 100 × 100 | 11 | 66 |
Flexural strength | 100 × 100 × 400 | 11 | 33 |
Flexural stiffness | 100 × 100 × 400 | 11 | 33 |
Impact resistance | Diameter 152, height 63.5 | 11 | 55 |
Fracture toughness | 100 × 100 × 400 | 11 | 33 |
Mix ID | F0.5 (KN) | ∆ε (με) |
---|---|---|
W | 5.5 | 30.67 |
S | 8.65 | 67.3 |
SP1_10% | 8.85 | 109.25 |
SP1_20% | 10 | 95.6 |
SP1_30% | 10.35 | 107.8 |
SP2_10% | 9.35 | 161.4 |
SP2_20% | 9.85 | 125 |
SP2_30% | 10 | 146.7 |
SP3_10% | 7.85 | 76.4 |
SP3_20% | 8.5 | 129.9 |
SP3_30% | 6.65 | 109.4 |
Mix ID | N1 | N2 | W1 |
---|---|---|---|
W | 55 | 56 | 1136 |
S | 629 | 629 | 12,760 |
SP1_10% | 1250 | 1258 | 25,520 |
SP1_20% | 811 | 818 | 16,594 |
SP1_30% | 555 | 559 | 11,340 |
SP2_10% | 1645 | 1645 | 33,371 |
SP2_20% | 1020 | 1020 | 20,692 |
SP2_30% | 1289 | 1289 | 26,149 |
SP3_10% | 126 | 130 | 2637 |
SP3_20% | 307 | 323 | 6552 |
SP3_30% | 58 | 60 | 1217 |
Mix ID | GF (N·m) | KIC (kN/m3/2) |
---|---|---|
W | 737.9 | 347.6 |
S | 1220.5 | 360.3 |
SP1_10% | 1663.2 | 549.9 |
SP1_20% | 1972.6 | 556.2 |
SP1_30% | 2483.7 | 632 |
SP2_10% | 1991.8 | 651 |
SP2_20% | 1569.8 | 587.8 |
SP2_30% | 1590.6 | 619.4 |
SP3_10% | 1252.9 | 632 |
SP3_20% | 1565.7 | 493 |
SP3_30% | 1469.7 | 537.2 |
Items | Limits | Unit | Test Value | N/Y |
---|---|---|---|---|
Benzene | 0.2 | g/kg | 0.1 | Y |
Toluene and xylene | 10 | g/kg | 4 | Y |
Volatile organic chemicals (VOCS) | 401 | g/L | 50 | Y |
Internal exposure index | 1 | 0.1 | Y | |
External exposure index | 1 | 0.1 | Y | |
Radium-226 | 0 | Bq/kg | 0 | Y |
Thorium-232 | 0 | Bq/kg | 0 | Y |
Potassium-40 | 0 | Bq/kg | 0 | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Li, H.; Peng, Y.; Jia, X.; Rahman, A. Toughness Behavior of SBR Acrylate Copolymer-Modified Pervious Concrete with Single-Sized Aggregates. Materials 2021, 14, 5089. https://doi.org/10.3390/ma14175089
Zhao C, Li H, Peng Y, Jia X, Rahman A. Toughness Behavior of SBR Acrylate Copolymer-Modified Pervious Concrete with Single-Sized Aggregates. Materials. 2021; 14(17):5089. https://doi.org/10.3390/ma14175089
Chicago/Turabian StyleZhao, Chaohua, Hualin Li, Yi Peng, Xiaoyao Jia, and Ali Rahman. 2021. "Toughness Behavior of SBR Acrylate Copolymer-Modified Pervious Concrete with Single-Sized Aggregates" Materials 14, no. 17: 5089. https://doi.org/10.3390/ma14175089
APA StyleZhao, C., Li, H., Peng, Y., Jia, X., & Rahman, A. (2021). Toughness Behavior of SBR Acrylate Copolymer-Modified Pervious Concrete with Single-Sized Aggregates. Materials, 14(17), 5089. https://doi.org/10.3390/ma14175089