Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seok, H.-J.; Jang, H.-W.; Lee, D.-Y.; Son, B.-G.; Kim, H.-K. Roll-to-roll sputtered, indium-free ZnSnO/AgPdCu/ZnSnO multi-stacked electrodes for high performance flexible thin-film heaters and heat-shielding films. J. Alloy. Compd. 2019, 775, 853–864. [Google Scholar] [CrossRef]
- He, X.; Shen, G.; Xu, R.; Yang, W.; Zhang, C.; Liu, Z.; Chen, B.; Liu, J.; Song, M. Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters. Polymers 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y.D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S.H. Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Adv. Mater. 2015, 27, 4744–4751. [Google Scholar] [CrossRef]
- He, X.; He, R.; Lan, Q.; Wu, W.; Duan, F.; Xiao, J.; Zhang, M.; Zeng, Q.; Wu, J.; Liu, J. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters. Materials 2017, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Jin, I.S.; Lee, H.D.; Hong, S.I.; Lee, W.; Jung, J.W. Facile Post Treatment of Ag Nanowire/Polymer Composites for Flexible Transparent Electrodes and Thin Film Heaters. Polymers 2021, 13, 586. [Google Scholar] [CrossRef] [PubMed]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef] [PubMed]
- Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.-P.; Bellet, D. Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: A Review. Small 2016, 12, 6052–6075. [Google Scholar] [CrossRef] [PubMed]
- Morales-Masis, M.; De Wolf, S.; Woods-Robinson, R.; Ager, J.W.; Ballif, C. Transparent Electrodes for Efficient Optoelectronics. Adv. Electron. Mater. 2017, 3, 529. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Park, C.H.; Kwack, J.H.; Lee, D.J.; Kim, J.G.; Choi, J.; Bae, B.H.; Park, S.J.; Kim, E.; Park, Y.W.; et al. Ag fiber/IZO Composite Electrodes: Improved Chemical and Thermal Stability and Uniform Light Emission in Flexible Organic Light-Emitting Diodes. Sci. Rep. 2019, 9, 738. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Wang, H.; Zeng, B.; Wang, J.; Chi, F. Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode. J. Mater. Sci. 2018, 54, 2343–2350. [Google Scholar] [CrossRef]
- Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S.L.; Ko, H. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. ACS Nano 2017, 11, 4346–4357. [Google Scholar] [CrossRef]
- Park, E.-S.; Kim, D.-Y.; Lee, J.-H.; Hwang, J.-U.; Song, Y.-S.; Park, K.-H.; Choi, H.-J. Optical and electrical properties of amorphous alloy metal mesh for transparent flexible electrodes. Appl. Surf. Sci. 2021, 547, 149109. [Google Scholar] [CrossRef]
- Tran, V.-D.; Pammi, S.; Park, B.-J.; Han, Y.; Jeon, C.; Yoon, S.-G. Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy 2019, 65, 104018. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, D.; Xu, C.; Ge, Y.; Liu, X.; Wei, Q.; Huang, L.; Ren, X.; Wang, C.; Wang, Y. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sens. Actuators B Chem. 2020, 320, 128325. [Google Scholar] [CrossRef]
- Nam, S.; Song, M.; Kim, D.-H.; Cho, B.; Lee, H.M.; Kwon, J.-D.; Park, S.-G.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H.; et al. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci. Rep. 2014, 4, 04788. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kim, C.; Jeong, M.; Kim, J.; Lee, J.; Oh, J.-W.; Lee, J.; Kim, S.H.; Park, S.S.; Kim, J.-M. Highly flexible and transparent metal grids made of metal nanowire networks. RSC Adv. 2015, 5, 77288–77295. [Google Scholar] [CrossRef]
- Miller, M.S.; O’Kane, J.C.; Niec, A.; Carmichael, R.S.; Carmichael, T. Silver Nanowire/Optical Adhesive Coatings as Transparent Electrodes for Flexible Electronics. ACS Appl. Mater. Interfaces 2013, 5, 10165–10172. [Google Scholar] [CrossRef]
- Benatto, G.A.D.R.; Roth, B.; Corazza, M.; Søndergaard, R.R.; Gevorgyan, S.; Jørgensen, M.; Krebs, F.C. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 2016, 8, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, H.-G.; Jin, J.; Ko, J.-H.; Lee, J.; Lee, J.-Y.; Bae, B.-S. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability. Nanoscale 2014, 6, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Blachowicz, T.; Ehrmann, A. Conductive Electrospun Nanofiber Mats. Materials 2019, 13, 152. [Google Scholar] [CrossRef] [Green Version]
- Locarno, S.A.; Eleta-Lopez, A.; Lupo, M.G.; Gelmi, M.L.; Clerici, F.; Bittner, A.M. Electrospinning of pyrazole-isothiazole derivatives: Nanofibers from small molecules. RSC Adv. 2019, 9, 20565–20572. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Tang, Y.; Tian, Q.; Wang, Y.; Ding, T. Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos. Sci. Technol. 2020, 200, 108414. [Google Scholar] [CrossRef]
- Haggren, T.; Shah, A.; Autere, A.; Kakko, J.-P.; Dhaka, V.; Kim, M.; Huhtio, T.; Sun, Z.; Lipsanen, H. Nanowire encapsulation with polymer for electrical isolation and enhanced optical properties. Nano Res. 2017, 10, 2657–2666. [Google Scholar] [CrossRef]
- Göbelt, M.; Keding, R.; Schmitt, S.W.; Hoffmann, B.; Jäckle, S.; Latzel, M.; Radmilović, V.V.; Radmilović, V.R.; Spiecker, E.; Christiansen, S. Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 2015, 16, 196–206. [Google Scholar] [CrossRef]
- Hwang, B.; Kim, T.; Han, S.M. Compression and tension bending fatigue behavior of Ag nanowire network. Extreme Mech. Lett. 2016, 8, 266–272. [Google Scholar] [CrossRef]
- Kim, C.-L.; Lee, J.-Y.; Shin, D.-G.; Yeo, J.-S.; Kim, D.-E. Mechanism of Heat-Induced Fusion of Silver Nanowires. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Kang, H.; Yi, G.-R.; Kim, Y.J.; Cho, J.H. Junction Welding Techniques for Metal Nanowire Network Electrodes. Macromol. Res. 2018, 26, 1066–1073. [Google Scholar] [CrossRef]
- Ding, Y.; Cui, Y.; Liu, X.; Liu, G.; Shan, F. Welded silver nanowire networks as high-performance transparent conductive electrodes: Welding techniques and device applications. Appl. Mater. Today 2020, 20, 100634. [Google Scholar] [CrossRef]
- Oh, J.S.; Oh, J.S.; Yeom, G.Y. Invisible silver nanomesh skin electrode via mechanical press welding. Nanomaterials 2020, 10, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, P.-H.; Kim, Y.D.; Sung, Y.H.; Lee, H. Microwave welding of silver nanowires for highly transparent conductive electrodes. Phys. Status Solidi A 2017, 214, 908. [Google Scholar] [CrossRef]
- Vafaei, A.; Hu, A.; Goldthorpe, I.A. Joining of Individual Silver Nanowires via Electrical Current. Nano-Micro Lett. 2014, 6, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kim, Y.; Cheon, S.; Yi, G.-R.; Cho, J.H. Halide Welding for Silver Nanowire Network Electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, C.; Sun, X.; Zheng, J.; Duan, J.; Zhuang, X. Enhancement of the Conductivity and Uniformity of Silver Nanowire Flexible Transparent Conductive Films by Femtosecond Laser-Induced Nanowelding. Nanomaterials 2019, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Nam, Y.S.; Song, M.H.; Park, H.W. Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 20938–20945. [Google Scholar] [CrossRef] [PubMed]
- Celano, T.A.; Hill, D.; Zhang, X.; Pinion, C.W.; Christesen, J.; Flynn, C.J.; McBride, J.; Cahoon, J.F. Capillarity-Driven Welding of Semiconductor Nanowires for Crystalline and Electrically Ohmic Junctions. Nano Lett. 2016, 16, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.S.; Oh, J.S.; Kim, T.H.; Yeom, G.Y. Efficient metallic nanowire welding using the Eddy current method. Nanotechnology 2019, 30, 065708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, O.; Maussion, P.; Dede, E.J.; Burdio, J.M. Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Trans. Ind. Electron. 2014, 61, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, F.; Chen, W.; Veeramalai, C.P.; Ooi, P.C.; Guo, T. Electromagnetic induction heating for single crystal graphene growth: Morphology control by rapid heating and quenching. Sci. Rep. 2015, 5, 09034. [Google Scholar] [CrossRef]
- Xiang, Z.; Ducharne, B.; Della Schiava, N.; Capsal, J.-F.; Cottinet, P.-J.; Coativy, G.; Lermusiaux, P.; Le, M.Q. Induction heating-based low-frequency alternating magnetic field: High potential of ferromagnetic composites for medical applications. Mater. Des. 2019, 174, 107804. [Google Scholar] [CrossRef]
- Zimmerer, C.; Mejia, C.S.; Utech, T.; Arnhold, K.; Janke, A.; Wosnitza, J. Inductive Heating Using a High-Magnetic-Field Pulse to Initiate Chemical Reactions to Generate Composite Materials. Polymers 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, R.D.; Dubé, M. Novel Heating Elements for Induction Welding of Carbon Fiber/Polyphenylene Sulfide Thermoplastic Composites. Adv. Eng. Mater. 2017, 19, 1700294. [Google Scholar] [CrossRef]
- Yang, K.C.; Sung, D.I.; Shin, Y.J.; Yeom, G.Y. Highly oxidation-resistant silver nanowires by C x F y polymers using plasma treatment. Nanotechnol. 2019, 30, 285702. [Google Scholar] [CrossRef] [PubMed]
- Rudnev, V.; Loveless, D.; Cook, R.L.; Black, M. Handbook of Induction Heating; CRC Press: London, UK, 2002; ISBN 9781315117485. [Google Scholar]
- Li, M.; Xu, H.; Lee, S.-W.R.; Kim, J.; Kim, D. Eddy Current Induced Heating for the Solder Reflow of Area Array Packages. IEEE Trans. Adv. Packag. 2008, 31, 399–403. [Google Scholar] [CrossRef]
- Mei, S.; Wang, Q.; Hao, M.; Xu, J.; Yin, H.; Xiao, H.; Feng, C.; Jiang, L.; Wang, X.; Liu, F.; et al. Theoretical analysis of induction heating in high-temperature epitaxial growth system. AIP Adv. 2018, 8, 085114. [Google Scholar] [CrossRef] [Green Version]
- Semiatin, S.L. Elements of Induction Heating: Design, Control, and Applications; Asm International: Novelty, OH, USA, 1988. [Google Scholar]
- Xiang, Z.; Jakkpat, K.-I.; Ducharne, B.; Capsal, J.-F.; Mogniotte, J.-F.; Lermusiaux, P.; Cottinet, P.-J.; Della Schiava, N.; Le, M.Q. Enhancing the Low-Frequency Induction Heating Effect of Magnetic Composites for Medical Applications. Polymers 2020, 12, 386. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Wen, L.; Tak, H.; Kim, H.; Kim, G.; Hong, J.; Chang, W.; Kim, D.; Yeom, G. Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films. Materials 2021, 14, 4448. https://doi.org/10.3390/ma14164448
Oh J, Wen L, Tak H, Kim H, Kim G, Hong J, Chang W, Kim D, Yeom G. Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films. Materials. 2021; 14(16):4448. https://doi.org/10.3390/ma14164448
Chicago/Turabian StyleOh, Jisoo, Long Wen, Hyunwoo Tak, Heeju Kim, Gyowun Kim, Jongwoo Hong, Wonjun Chang, Dongwoo Kim, and Geunyoung Yeom. 2021. "Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films" Materials 14, no. 16: 4448. https://doi.org/10.3390/ma14164448
APA StyleOh, J., Wen, L., Tak, H., Kim, H., Kim, G., Hong, J., Chang, W., Kim, D., & Yeom, G. (2021). Radio Frequency Induction Welding of Silver Nanowire Networks for Transparent Heat Films. Materials, 14(16), 4448. https://doi.org/10.3390/ma14164448