The Al Doping Effect on Epitaxial (In,Mn)As Dilute Magnetic Semiconductors Prepared by Ion Implantation and Pulsed Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SRIM Calculation
3.2. Structure of All Co-Doped Samples
3.3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosuke, T.; Duc, A.L.; Chiba, T.; Tomohiro, K.; Chiba, D.; Masaaki, T. Giant gate-controlled proximity magnetoresistance in semiconductor-based ferromagnetic–non-magnetic bilayers. Nat. Phys. 2019, 15, 1134–1139. [Google Scholar]
- Dietl, T.; Bonanni, A.; Ohno, H. Families of magnetic semiconductors—An overview. J. Semicond. 2019, 40, 080301. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietl, T.; Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 2014, 86, 187–251. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T.; Ohno, H.; Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 2001, 63, 195205. [Google Scholar] [CrossRef] [Green Version]
- Ohno, H.; Chiba, D.; Matsukura, F.; Omiya, T.; Abe, E.; Dietl, T.; Ohno, Y.; Ohtani, K. Electric-field control of ferromagnetism. Nature 2000, 408, 944–946. [Google Scholar] [CrossRef]
- Chiba, D.; Sawicki, M.; Nishitani, Y.; Nakatani, Y.; Matsukura, F.; Ohno, H. Magnetization vector manipulation by electric fields. Nature 2008, 455, 515–518. [Google Scholar] [CrossRef]
- Chiba, D.; Yamanouchi, M.; Matsukura, F.; Ohno, H. Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor. Science 2003, 301, 943–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrand, D.; Cibert, J.; Bourgognon, C.; Tatarenko, S.; Wasiela, A.; Fishman, G.; Bonanni, A.; Sitter, H.; Kolesnik, S.; Jaroszyski, J.; et al. Carrier-induced ferromagnetic interactions in p-doped Zn1−xMnxTe epilayers. J. Cryst. Growth 2000, 214, 387–390. [Google Scholar] [CrossRef]
- Ferrand, D.; Cibert, J.; Wasiela, A.; Bourgognon, C.; Tatarenko, S.; Fishman, G.; Andrearczyk, T.; Jaroszynski, J.; Kolesnik, S.; Dietl, T.; et al. Carrier-induced ferromagnetism in p-Zn1−xMnxTe. Phys. Rev. B 2001, 63, 085201. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, A.; Rushforth, A.W.; Wang, M.; Farley, N.R.S.; Wadley, P.; Hall, J.L.; Staddon, C.R.; Edmonds, K.W.; Campion, R.P.; Foxon, C.T.; et al. Tuning perpendicular magnetic anisotropy in (Ga,Mn)(As,P) by thermal annealing. Appl. Phys. Lett. 2010, 97, 122504. [Google Scholar] [CrossRef] [Green Version]
- Rushforth, A.W.; Wang, M.; Farley, N.R.S.; Campion, R.P.; Edmonds, K.W.; Staddon, C.R.; Foxon, C.T.; Gallagher, B.L. Molecular beam epitaxy grown (Ga,Mn)(As,P) with perpendicular to plane magnetic easy axis. J. Appl. Phys. 2009, 104, 073908. [Google Scholar] [CrossRef] [Green Version]
- Rushforth, A.W.; Farley, N.R.S.; Campion, R.P.; Edmonds, K.W.; Staddon, C.R.; Foxon, C.T.; Gallagher, B.L.; Yu, K.M. Compositional dependence of ferromagnetism in (Al,Ga,Mn)As magnetic semiconductors. Phys. Rev. B 2008, 78, 085209. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.; Wang, M.; Xie, Y.; Hübner, R.; Heller, R.; Yuan, Y.; Helm, M.; Zhang, X.; Zhou, S. p-type codoping effect in (Ga,Mn)As: Mn lattice location versus magnetic properties. Phys. Rev. Mater. 2019, 3, 084604. [Google Scholar] [CrossRef]
- Stone, P.R.; Alberi, K.; Tardif, S.K.Z.; Beeman, J.W.; Yu, K.M.; Walukiewicz, W.; Dubon, O.D. Metal-Insulator Transition by Isovalent Anion Substitution in Ga1−xMnxAs: Implications to Ferromagnetism. Phys. Rev. Lett. 2008, 101, 087203. [Google Scholar] [CrossRef] [Green Version]
- Stone, P.R.; Bihler, C.; Kraus, M.; Scarpulla, M.A.; Beeman, J.W.; Yu, K.M.; Brandt, M.S.; Dubon, O.D. Compensation-dependent in-plane magnetization reversal processes in Ga1−xMnxPyS1−y. Phys. Rev. B 2008, 78, 21442. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Yuan, Y.; Wang, M.; Hentschel, H.; Bottger, R.; Helm, M.; Zhou, S. p-type co-doping effect of (Ga,Mn)P: Magnetic and magneto-transport properties. J. Magn. Magn. Mater. 2018, 459, 102–105. [Google Scholar] [CrossRef]
- Mašek, J.; Kudrnovský, J.; Máca, F.; Sinova, J.; MacDonald, A.H.; Campion, R.P.; Gallagher, B.L.; Jungwirth, T. Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors: Electronic structure calculations. Phys. Rev. B 2007, 75, 045202. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Wang, H.L.; Ma, J.L.; Zhao, X.P.; Zhao, J.H. Efficiently rotating the magnetization vector in a magnetic semiconductor via organic molecules. ACS Appl. Mater. Interfaces 2019, 11, 6615. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wang, H.L.; Pan, D.; Keiper, T.; Li, L.X.; Yu, X.Z.; Lu, J.; Lochner, E.; von Molnár, S.; Xiong, P.; et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv. Mater. 2015, 27, 8043. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, C.; Hübner, R.; Jakiela, R.; Böttger, R.; Helm, M.; Sawicki, M.; Dietl, T.; Zhou, S. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As. Phys. Rev. Mater. 2017, 1, 054401. [Google Scholar] [CrossRef] [Green Version]
- Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y.; Ohno, H.; Munekata, H. Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In,Mn)As/(Ga,Al) Sb. Phys. Rev. B 1999, 59, 5826. [Google Scholar] [CrossRef]
- Munekata, H. Anomalous Hall effect in III–V-based magnetic semiconductor heterostructures. Mater. Sci. Eng. B 1995, 31, 151–156. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Gao, K.; Khalid, M.; Wu, C.; Zhang, W.; Munnik, F.; Weschke, E.; Baehtz, C.; Skorupa, W.; et al. High Curie temperature and perpendicular magnetic anisotropy in homoepitaxial InMnAs films. J. Phys. D Appl. Phys. 2015, 48, 235002. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Hübner, R.; Liu, F.; Sawicki, M.; Gordan, O.; Salvan, G.; Zahn, D.R.T.; Banerjee, D.; Baehtz, C.; Helm, M.; et al. Ferromagnetic Mn-Implanted GaP: Microstructures vs. Magnetic Properties. ACS Appl. Mater. Interfaces 2016, 8, 3912–3918. [Google Scholar] [CrossRef]
- Edmonds, K.W.; van der Laan, G.; Farley, N.R.S.; Arenholz, E.; Campion, R.P.; Foxon, C.T.; Gallagher, B.L. Strain dependence of the Mn anisotropy in ferromagnetic semiconductors observed by x-ray magnetic circular dichroism. Phys. Rev. B 2008, 77, 113205. [Google Scholar] [CrossRef] [Green Version]
- Van der Laan, G.; Edmonds, K.W.; Arenholz, E.; Farley, N.R.S.; Gallagher, B.L. Valence state model of strain-dpendent Mn L2,3 x-ray magnetic circular dichroism from ferromagnetic semiconductors. Phys. Rev. B 2010, 81, 214422. [Google Scholar] [CrossRef] [Green Version]
- Arrott, A.; Noakes, J.E. Approximate Equation of State For Nickel Near its Critical Temperature. Phys. Rev. Lett. 1967, 19, 786. [Google Scholar] [CrossRef]
- Yuan, Y.; Amarouche, T.; Xu, C.; Rushforth, A.; Böttger, R.; Edmonds, K.; Campion, R.; Gallagher, B.; Helm, M.; von Bardeleben, H.J.; et al. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation. J. Phys. D Appl. Phys. 2018, 51, 145001. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Al Imp. Flu. (/cm2) | MR (emu/cm3) | TC (K) | HC (Oe) | K (104 erg/cm3) |
---|---|---|---|---|---|
InMnAlAs-0 | 0 | 22.7 | 80 | 107 | 2.71 |
InMnAlAs-4 | 1.7 × 1016 | 20.3 | 72 | 674 | 2.13 |
InMnAlAs-8 | 3.4 × 1016 | 14.3 | 60 | 993 | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Xie, Y.; Yuan, N.; Wang, M.; Heller, R.; Kentsch, U.; Zhai, T.; Wang, X. The Al Doping Effect on Epitaxial (In,Mn)As Dilute Magnetic Semiconductors Prepared by Ion Implantation and Pulsed Laser Melting. Materials 2021, 14, 4138. https://doi.org/10.3390/ma14154138
Yuan Y, Xie Y, Yuan N, Wang M, Heller R, Kentsch U, Zhai T, Wang X. The Al Doping Effect on Epitaxial (In,Mn)As Dilute Magnetic Semiconductors Prepared by Ion Implantation and Pulsed Laser Melting. Materials. 2021; 14(15):4138. https://doi.org/10.3390/ma14154138
Chicago/Turabian StyleYuan, Ye, Yufang Xie, Ning Yuan, Mao Wang, René Heller, Ulrich Kentsch, Tianrui Zhai, and Xiaolei Wang. 2021. "The Al Doping Effect on Epitaxial (In,Mn)As Dilute Magnetic Semiconductors Prepared by Ion Implantation and Pulsed Laser Melting" Materials 14, no. 15: 4138. https://doi.org/10.3390/ma14154138
APA StyleYuan, Y., Xie, Y., Yuan, N., Wang, M., Heller, R., Kentsch, U., Zhai, T., & Wang, X. (2021). The Al Doping Effect on Epitaxial (In,Mn)As Dilute Magnetic Semiconductors Prepared by Ion Implantation and Pulsed Laser Melting. Materials, 14(15), 4138. https://doi.org/10.3390/ma14154138