Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils
Abstract
:1. Introduction
2. Materials and Method
2.1. Site Description
2.2. Soil Sampling and Measurements
3. Results
3.1. Basic Soil Properties
3.2. Soil Organic Matter and Reaction (pH)
3.3. Soil Hydraulic Properties
4. Discussion
4.1. Soil Organic Matter and Acidity
4.2. Hydraulic Properties
4.3. Suitability of Measurement and Calculated Methods for Determining Soil Porosity
5. Conclusions
- The long-term application of recycled chicken manure (CM) and spent mushroom substrate (SMS) increased the organic matter content and decreased acidity in sandy soils.
- CM significantly reduced the content of transmission pores (>50 µm) and increased that of residual pores (<0.5 µm) and the water content corresponding to the field water capacity at all 3 depths within 0–60 cm. SMS significantly increased the content of residual pores and the water content corresponding to the field water capacity at two depths within 0–40 cm.
- CM reduced the saturated hydraulic conductivity significantly at two depths within 0–40 cm and insignificantly at a depth of 40–60 cm. The insignificant reduction of the saturated hydraulic conductivity at all depths was caused by the addition of SMS. The application of CM and SMS decreased and increased the air entry values 1/α, respectively. The fitted unsaturated hydraulic conductivity at two depths within 0–40 cm increased and decreased in response to the CM and SMS application, respectively.
- Long-term use of recycled organic materials can be a suitable means to improve the quality and crop productivity of sandy soils by increasing water retention capacity and decreasing acidity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajayi, A.E.; Holthusen, D.; Horn, R. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Till. Res. 2016, 155, 166–175. [Google Scholar] [CrossRef]
- Villagra-Mendoza, K.; Horn, R. Effect of biochar on the unsaturated hydraulic conductivity of two amended soils. Int. Agrophys. 2018, 32, 373–378. [Google Scholar] [CrossRef]
- EASAC (European Academies’ Science Advisory Council). Opportunities for Soil Sustainability in Europe: Policy Report 36; European Academies’ Science Advisory Council, German National Academy of Sciences Leopoldina: Saale, Germany, 2018. [Google Scholar]
- Gluba, Ł.; Rafalska-Przysucha, A.; Szewczak, K.; Łukowski, M.; Szlązak, R.; Vitková, J.; Kobyłecki, R.; Bis, Z.; Wichliński, M.; Zarzycki, R.; et al. Effect of Fine Size-Fractionated Sunflower Husk Biochar on Water Retention Properties of Arable Sandy Soil. Materials 2021, 14, 1335. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter Key to Drought-Resistant Soil and Sustained Crop Production; FAO Soils Bulletin: Rome, Italy, 2005; p. 80. [Google Scholar]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frąc, M.; Kismanyoky, T.; Lipiec, J.; Tits, M.; Toth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Rusco, E.; Jones, R.; Bidoglioe, G. Organic Matter in the Soils of Europe: Present Status and Future Trends. Institute for Environment and Sustainability; Joint Research Centre, European Commission: Ispra, Italy, 2001; pp. 1–12. [Google Scholar]
- Winowiecki, L.; Vågen, T.-G.; Massawe, B.; Jelinski, N.A.; Lyamchai, C.; Sayula, G.; Msoka, E. Landscape-scale variability of soil health indicators: Effects of cultivation on soil organic carbon in the Usambara Mountains of Tanzania. Nutr. Cycl. Agroecosyst. 2016, 105, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- West, T.O.; Post, M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Hatano, R.; Lipiec, J. Effects of land use and cultural practices on greenhouse gases fluxes in soil. Acta Agroph. 2004, 109, 1–51. [Google Scholar]
- Kismányoky, T.; Tóth, Z. Effect of mineral and organic fertilization on soil organic carbon content as well as on grain production of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely, Hungary. Arch. Agron. Soil Sci. 2013, 59, 1121–1131. [Google Scholar] [CrossRef]
- Powlson, D.S.; Riche, A.B.; Coleman, K.; Glendining, M.J.; Whitmore, A.P. Carbon sequestration in European soils through straw incorporation: Limitations and alternatives. Waste Manag. 2008, 28, 741–746. [Google Scholar] [CrossRef]
- Ruysschaert, G.; Poesen, J.; Verstraeten, G.; Govers, G. Soil Losses Due to Crop Harvesting in Europe. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; Wiley: Chichester, UK, 2006; pp. 609–621. [Google Scholar]
- Lal, R. Accelerated Soil erosion as a source of atmospheric CO2. Soil Till. Res. 2019, 188, 35–40. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Janssens-Maenhout, G.; Muntean, M.; Peters, J.A.H.W. Trends in Global CO2 Emissions: Report. PBL Netherlands Environmental Assessment Agency, The Hague, PBL Publication Number: 1803, JRC Technical Note number: JRC98184, 2015, p. 80. Available online: http://edgar.jrc.ec.europa.eu/news_docs/ (accessed on 15 July 2021).
- Zdruli, P.; Lal, R.; Cherlet, M.; Kapur, S. New World Atlas of Desertification and Issues of Carbon Sequestration, Organic Carbon Stocks, Nutrient Depletion and Implications for Food Security. In Carbon Management, Technologies, and Trends in Mediterranean Ecosystems; Springer: Cham, Switzerland, 2017; pp. 13–25. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Field, D.J. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- European Union Closing the Loop—An EU Action Plan for the Circular Economy. 2015. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 15 July 2021).
- Grimm, D.; Wösten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [Green Version]
- Ksheem, A.M.A. Optimising Nutrient Extraction from Chicken Manure and Compost. Ph.D. Thesis, University Sothern Qeensland, Qeensland, Australia, 2014; p. 109. [Google Scholar] [CrossRef]
- Polat, E.; Uzun, H.I.; Topçuoglu, B.; Önal, K.; Onus, A.N.; Karaca, M. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol. 2009, 8, 176–180. [Google Scholar]
- Malińska, K.; Czekała, W.; Janczak, D.; Dach, J.; Mazurkiewicz, J.; Drożdż, D. Spent mushroom substrate as a supplementary material for sewage sludge composting mixtures. Eng. Protect. Environ. 2018, 21, 29–38. [Google Scholar] [CrossRef]
- Dikinya, O.; Mufwanzala, N. Chicken manure enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
- Jeswani, H.; Whiting, A.; Martin, A.; Azapagic, A. Environmental and economic sustainability of poultry litter gasification for electricity and heat generation. Waste Manag. 2019, 95, 182–191. [Google Scholar] [CrossRef]
- Tańczuk, M.; Junga, R.; Kolasa-Więcek, A.; Niemiec, P. Assessment of the energy potential of chicken manure in Poland. Energies 2019, 12, 1244. [Google Scholar] [CrossRef] [Green Version]
- Paredes, C.; Medina, E.; Moral, R.; Perez-Murcia, M.D.; Moreno-Caselles, J.; Bustamante, M.A.; Celilia, J.A. Characterization of the different organic matter fractions of spent mushroom substrate. Commun. Soil Sci. Plant 2009, 40, 150–161. [Google Scholar] [CrossRef]
- Statista 2019. Available online: www.statista.com (accessed on 15 July 2021).
- Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef]
- Jordan, S.N.; Mullen, G.J.; Murphy, M.C. Composition variability of spent mushroom compost in Ireland. Bioresour. Technol. 2008, 99, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.L.; Tsang, Y.Y.; Chiu, S.W. Use of spent mushroom compost to bioremediate AH-contaminated samples. Chemosphere 2003, 52, 1539–1546. [Google Scholar] [CrossRef]
- Liang, S.; Chiu, S.W. Dual Roles of Spent Mushroom Substrate on Soil Improvement and Enhanced Drought Tolerance of Wheat Triticum aestivum, 3rd QLIF Congress, Hohenheim, Germany, 2007; pp. 20–23. Available online: http://orgprints.org/view/projects/int_conf_qlif2007.html (accessed on 15 July 2021).
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms: Technology and Applications; Zied, D.C., Pardo-Giminez, A., Eds.; John Wiley: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar]
- Van Genuchten, M.T.; Pachepsky, Y. Hydraulic Properties of Unsaturated Soils. In Encyclopedia of Agrophysics; Glinski, J., Horabik, J., Lipiec, J., Eds.; Springer: New York, NY, USA, 2011; pp. 368–376. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter and water retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Wassar, F.; Gandolfi, C.; Rienzner, M.; Chiaradia, E.A.; Bernardoni, E. Predicted and measured soil retention curve parameters in Lombardy region north of Italy. Int. Soil Water Conserv. Res. 2016, 4, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Jaumann, S.; Zhang, J.; Roth, K. Efficient estimation of effective hydraulic properties of stratal undulating surface layer using time-lapse multi-channel GPR. Hydrol. Earth Syst. Sci. 2019, 23, 3653–3663. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M.T. Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: A review. Vadose Zone J. 2010, 9, 795–820. [Google Scholar] [CrossRef]
- Montzka, C.; Herbst, M.; Weihermüller, L.; Verhoef, A.; Vereecken, H. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data 2017, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Schjønning, P.; Heckrath, G.; Christensen, B.T. Threats to Soil Quality in Denmark: A Review of Existing Knowledge in the Context of the EU Soil Thematic Strategy. In DJF Report Plant Science No. 143; The Faculty of Agricultural Sciences, Aarhus University: Aarhus, Denmark, 2009. [Google Scholar]
- Usowicz, B.; Lipiec, J. Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil Till. Res. 2017, 174, 241–250. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 58, 217–310. [Google Scholar] [CrossRef]
- WRB IUSS Working Group. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Suhartini, S.; Wijana, S.; Surjono; Wardhani, N.W.S.; Muttaqin, S. Composting of chicken manure for biofertiliser production: A case study in Kidal Village, Malang Regency. In IOP Publishing Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 524, p. 012016IOP. [Google Scholar] [CrossRef]
- Becher, M.; Pakuła, K. Nitrogen fractions in spent mushroom substrate. J. Elem. 2014, 19, 947–958. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Water Retention: Laboratory Methods. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; SSA Book Series; Springer: Berlin/Heidelberg, Germany, 1986; Volume 5, p. 1188. [Google Scholar]
- Greenland, D.J. Soil management and soil degradation. J. Soil Sci. 1981, 32, 301–322. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 4, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Oosterbaan, R.J.; Nijland, H.J. Determining the Saturated Hydraulic Conductivity. In Drainage Principles and Application, International Institute for Land Reclamation and Improvement No. 16, 2nd ed.; Ritzema, H.P., Ed.; ILRI: Wageningen, The Netherlands, 1994; pp. 435–476. [Google Scholar]
- Blake, G.R.; Hartge, K.H.; Klute, A. Bulk Density. In Methods of Soil Analysis, 546 Part 1: Physical and Mineralogical Methods-Agronomy Monograph No. 9; ASA-SSSA 547: Madison, WN, USA, 1986; pp. 363–375. [Google Scholar]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, S.; Gawliński, Z.; Szczubiałka, Z. Procedures for Soil and Plant Analysis; Institute of Environmental Protection: Warsaw, Poland, 1991. [Google Scholar]
- Becher, M. Properties of organic matter of soil fertilised with spent mushroom (Agaricus L.) substrate. Acta Agroph. 2013, 20, 241–252. [Google Scholar]
- Soussana, J.-F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.-L.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000—Soils for food security and climate’ initiative. Soil Till. Res. 2017, 188, 3–15. [Google Scholar] [CrossRef]
- Jørgensen, N.O.G. Organic Nitrogen. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; Volume 2, pp. 832–851. [Google Scholar]
- Bhogal, A.; Nicholson, F.A.; Rollett, A.; Taylor, M.; Litterick, A.; Whittingham, M.J.; Williams, J.R. Improvements in the quality of agricultural soils following organic material additions depend on both the quantity and quality of the materials applied. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Królczyk, J.B.; Latawiec, A.E.; Kuboń, M. Sustainable agriculture—The potential to increase yields of wheat and rapeseed in Poland. Pol. J. Environ. Stud. 2014, 23, 663–672. [Google Scholar]
- Ibrahim, A.; Usman, A.R.; Al-Wabel, M.I.; Nadeem, M.; Ok, Y.S.; Al-Omran, A. Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: Influence of particle size and application depth. Arch. Agron. Soil Sci. 2016, 63, 185–197. [Google Scholar] [CrossRef]
- Klasson, K.T.; Lima, I.M.; Boihem, L.L., Jr. Poultry manure as raw material for mercury adsorbents in gas applications. J. Appl. Poult. Res. 2009, 18, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Stawiński, J.; Gliński, J.; Ostrowski, J.; Stępniewska, Z.; Sokołowska, Z.; Bowanko, G.; Józefaciuk, G.; Księżopolska, A.; Matyka-Sarzyńska, D. Spatial characterization of specific surface area of arable soils in Poland. Acta Agroph. 2000, 33, 3–48. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Aytenew, M.; Bore, G. Effects of organic amendments on soil fertility and environmental quality: A review. J. Plant Sci. 2020, 8, 112–119. [Google Scholar]
- Rawls, W.; Nemes, A.; Pachepsky, Y. Effect of soil organic carbon on soil hydraulic Properties. Develop. Soil Sci. 2004, 30, 95–114. [Google Scholar]
- Nimmo, J.R. Porosity and pore size distribution. In Encyclopedia of Soils in the Environment; Elsevier: London, UK, 2004; pp. 295–303. [Google Scholar]
Treatments | Textural Fractions, g kg−1 | Penetration Resistance | Particle Density | ||
---|---|---|---|---|---|
Clay (<2 μm) | Silt (2–50 μm) | Sand (>50 μm) | (MPa) | (Mg m−3) 0–20, 20–40, 40–60 cm | |
Control (no chicken manure) | 20.5 | 270.4 | 709.1 | 1.87 (0.11) | 2.64, 2.67, 2.67 |
Chicken manure | 21.6 | 345.9 | 632.5 | 1.88 (0.09) | 2.57, 2.61, 2.62 |
Control (no spent mushroom substr.) | 18.0 | 240.9 | 741.1 | 2.76 (0.10) | 2.63, 2.67, 2.67 |
Spent mushroom substrate | 19.4 | 269.1 | 711.5 | 1.63 (0.09) | 2.53, 2.53, 2.60 |
Treatment | Depth (cm) | θr (cm3 cm−3) | θs (cm3 m−3) | α (cm−1) | 1/α (cm) | n | R2 |
---|---|---|---|---|---|---|---|
Control (no chicken manure) | 0–20 | 0.036 | 0.400 | 0.3414 | 2.9 | 1.301 | 0.993 |
20–40 | 0.000 | 0.312 | 0.0614 | 16.3 | 1.212 | 0.998 | |
40–60 | 0.000 | 0.331 | 0.1946 | 5.1 | 1.242 | 0.991 | |
Chicken manure | 0–20 | 0.001 | 0.387 | 0.0275 | 36.4 | 1.113 | 0.993 |
20–40 | 0.035 | 0.366 | 0.0259 | 38.6 | 1.178 | 0.996 | |
40–60 | 0.076 | 0.306 | 0.0333 | 30.0 | 1.204 | 0.998 | |
Control (no spent mushroom substrate) | 0–20 | 0.000 | 0.363 | 0.1582 | 6.3 | 1.208 | 0.995 |
20–40 | 0.000 | 0.321 | 0.0269 | 37.2 | 1.370 | 0.998 | |
40–60 | 0.000 | 0.344 | 0.0288 | 34.7 | 1.320 | 0.997 | |
Spent mushroom substrate | 0–20 | 0.000 | 0.461 | 0.3650 | 2.7 | 1.113 | 0.989 |
20–40 | 0.030 | 0.406 | 0.0891 | 11.2 | 1.155 | 0.997 | |
40–60 | 0.039 | 0.339 | 0.0263 | 38.0 | 1.368 | 0.998 |
Treatments | Depth (cm) | Porosity (% v/v) | Field Water Capacity %, v/v | Saturated Hydraulic Conductivity m/day | ||
---|---|---|---|---|---|---|
Transmission Pores >50 µm | Storage Pores 50–0.5 µm | Residual Pores and Bonding Space <0.5 µm | ||||
Control (no chicken manure) | 0–20 | 21.4 (1.26) a | 11.0 (1.27) b | 7.3 (1.50) c | 15.2 (0.66) d | 15.8 (4.51) a |
20–40 | 8.0 (1.48) a | 14.0 (2.16) a | 8.9 (1.27) b | 20.5 (1.12) b | 7.8 (3.80) a | |
40–60 | 14.1 (2.70) a | 12.1 (0.79) b | 6.0 (2.86) b | 15.6 (4.24) a | 9.2 (4.02) a | |
Chicken manure | 0–20 | 3.8 (1.25) c | 13.2 (2.53) ab | 21.8 (1.03) a | 33.1 (2.38) a | 4.7 (2.18) b |
20–40 | 4.3 (2.33) b | 15.0 (4.29) a | 17.0 (1.92) a | 29.9 (2.10) a | 2.4 (0.73) b | |
40–60 | 4.1 (1.59) c | 11.0 (1.00) b | 15.4 (2.41) a | 24.7 (2.71) c | 8.5 (4.63) a | |
Control (no spent mushroom substrate) | 0–20 | 13.2 (1.05) b | 13.8 (0.21) a | 8.7 (0.72) c | 19.9 (0.86) c | 5.7 (1.86) b |
20–40 | 8.0 (0.74) a | 19.2 (1.24) a | 4.9 (2.07) b | 20.5 (2.86) b | 2.6 (0.23) b | |
40–60 | 8.1 (0.43) b | 19.6 (1.33) a | 6.6 (2.76) b | 22.2 (1.83) b | 1.8 (0.71) b | |
Spent mushroom substrate | 0–20 | 11.3 (1.50) b | 13.1 (0.80) a | 19.3 (1.44) b | 29.5 (1.06) b | 4.7 (1.03) b |
20–40 | 8.8 (2.03) a | 14.3 (1.64) a | 17.2 (2.30) a | 29.2 (2.10) b | 0.78 (0.20) b | |
40–60 | 7.3 (0.98) b | 18.0 (1.11) a | 8.6 (0.65) b | 23.2 (0.28) bc | 4.4 (0.83) ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipiec, J.; Usowicz, B.; Kłopotek, J.; Turski, M.; Frąc, M. Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils. Materials 2021, 14, 4036. https://doi.org/10.3390/ma14144036
Lipiec J, Usowicz B, Kłopotek J, Turski M, Frąc M. Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils. Materials. 2021; 14(14):4036. https://doi.org/10.3390/ma14144036
Chicago/Turabian StyleLipiec, Jerzy, Bogusław Usowicz, Jerzy Kłopotek, Marcin Turski, and Magdalena Frąc. 2021. "Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils" Materials 14, no. 14: 4036. https://doi.org/10.3390/ma14144036
APA StyleLipiec, J., Usowicz, B., Kłopotek, J., Turski, M., & Frąc, M. (2021). Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils. Materials, 14(14), 4036. https://doi.org/10.3390/ma14144036