Features of the Structure and Electrophysical Properties of Solid Solutions of the System (1-x-y) NaNbO3-xKNbO3-yCd0.5NbO3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Samples
2.2. Methods of Studying Samples
3. Results and Discussion
3.1. Crystal Structure
3.2. Microstructure
3.3. Electrophysical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Elsevier BV: Amsterdam, The Netherlands, 1971; p. 259. [Google Scholar]
- Erhart, J. Bulk piezoelectric ceramic transformers. Adv. Appl. Ceram. 2013, 112, 91–96. [Google Scholar] [CrossRef]
- Andryushin, K.P.; Andryshina, I.N.; Shilkina, L.A.; Dudkina, S.I.; Verbenko, I.A.; Reznichenko, L.A.; Mazuritskiy, M.; Nagaenko, A.; Parinov, I.A.; Chang, S.-H.; et al. Thermodynamic Prehistory in the Formation of the Internal Structure of Highly Stable Ferroelectric Materials. Appl. Sci. 2018, 8, 1897. [Google Scholar] [CrossRef] [Green Version]
- Reznichenko, L.A.; Verbenko, I.A.; Shilkina, L.A.; Pavlenko, A.V.; Dudkina, S.I.; Andryushina, I.N.; Andryushin, K.P.; Abubakarov, A.G.; Krasnyakova, T.V. Binary, Ternary and Four-Component Systems Based on Sodium Niobate: Phase Diagrams of States, the Role of the Number of Components and Defectiveness in the Formation of the Properties. Springer Proc. Phys. 2018, 207, 3–23. [Google Scholar]
- Andryushin, K.; Andryushina, I.; Shilkina, L.; Nagaenko, A.; Dudkina, S.; Pavelko, A.; Verbenko, I.; Reznichenko, L. Features of the structure and macro responses in hard ferro piezoceramics based on the PZT system. Ceram. Int. 2018, 44, 18303–18310. [Google Scholar] [CrossRef]
- European Union. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 2003, 37, 19–23. [Google Scholar]
- European Union. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 2011, 174, 88–110. [Google Scholar]
- Verbenko, I.A.; Razumovskaya, O.N.; Shilkina, L.A.; Reznichenko, L.A.; Andryushin, K.P. Production and dielectric properties of lead-free ceramics with the formula [(Na0.5K0.5)1−xLix](Nb1−y−zTaySbz)O3. Inorg. Mater. 2009, 45, 702–708. [Google Scholar] [CrossRef]
- Guo, X.; Shi, P.; Lou, X.; Liu, Q.; Zuo, H. Superior energy storage properties in (1−x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.2Sr0.7TiO3)-xCaZrO3 ceramics with excellent temperature stability. J. Alloys Compd. 2021, 876, 160101. [Google Scholar] [CrossRef]
- Kacem, H.; Dhahri, A.; Sassi, Z.; Seveyrat, L.; Lebrun, L.; Perrin, V.; Dhahri, J. Relaxor characteristics and pyroelectric energy harvesting performance of BaTi0.91Sn0.09O3 ceramic. J. Alloys Compd. 2021, 872, 159699. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Jia, Y.; Yadav, A.K.; Yan, B.; Li, M.; Quan, Q.; Wang, W.; Fan, H. Large electro-strain with excellent fatigue resistance of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 perovskite ceramics. Ceram. Int. 2021, 47, 17092–17098. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, D.; Sharma, A.K. Structural and dielectric properties of pure potassium sodium niobate (KNN) lead free ceramics. Solid State Commun. 2021, 334–335, 114345. [Google Scholar] [CrossRef]
- Fuentes, J.; Portelles, J.; Rodríguez, M.D.; Ostos, C.; Arciniega, J.G.; Valdez, Z.B.; Siqueiros, J.; Herrera, O.R. Physical properties of the (K0.44Na0.52Li0.04)0.97La0.01Nb0.9Ta0.1O3 ceramic with coexisting tetragonal and orthorhombic monocrystalline grains at room temperature. Ceram. Int. 2021, 47, 11958–11965. [Google Scholar] [CrossRef]
- Morshed, T.; Haq, E.U.; Silien, C.; Tofail, S.A.M.; Zubair, M.A.; Islam, M.F. Piezo and pyroelectricity in spark plasma sintered potassium sodium niobate (KNN) ceramics. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1428–1432. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, D.; Zhu, J. Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chem. Rev. 2015, 115, 2559–2595. [Google Scholar] [CrossRef]
- Tan, L.; Wang, X.; Zhu, W.; Li, A.; Wang, Y. Excellent piezoelectric performance of KNNS-based lead-free piezoelectric ceramics through powder pretreatment by hydrothermal method. J. Alloys Compd. 2021, 874, 159770. [Google Scholar] [CrossRef]
- Panda, P.K. Review: Environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049–5062. [Google Scholar] [CrossRef] [Green Version]
- Kaya, M.Y.; Mensur-Alkoy, E.; Gurbuz, A.; Oner, M.; Alkoy, S. Influence of Compositional Variation on the Electrical Properties of [Pb(Zn1/3Nb2/3)O3]–[Pb(Zr,Ti)O3] Ceramics and Their Transducer Application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1268–1277. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H.; Ren, W.; Ye, Z.-G. Synthesis, structure and electric properties of a novel solid solution system: (1-x)Pb(Zr0.52Ti0.48)O3-xBi(Zn2/3Nb1/3)O3. Ferroelectrics 2018, 533, 183–191. [Google Scholar] [CrossRef]
- Song, G.; Zhang, F.; Liu, F.; Liu, Z.; Li, Y. Electrical properties and temperature stability of SrTiO3-modified (Bi1/2Na1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 piezoceramics. J. Am. Ceram. Soc. 2021, 104, 4049–4057. [Google Scholar] [CrossRef]
- Karakaya, M.; Adem, U. Enhanced room temperature energy storage density of Bi(Li1/3Ti2/3)O3 substituted Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Phys. D Appl. Phys. 2021, 54, 275501. [Google Scholar] [CrossRef]
- Jia, B.; Xi, Z.; Guo, F.; Zhang, S.; Dong, S.; Long, W.; Li, X.; Fang, P.; Dai, Z. Enhanced piezoelectric properties in new ternary ceramics CuO-doped PSN-PMN-PT by low-temperature sintering. Ceram. Int. 2021, 47, 9325–9331. [Google Scholar] [CrossRef]
- Powder Diffraction File; Data Cards Inorganic Section; JCPDS: Swarthmore, PA, USA, 1948; Set. 14, Card. 603.
- Powder Diffraction File; Data Cards Inorganic Section; JCPDS: Swarthmore, PA, USA, 1948; Set. 32, Card. 822.
- Powder Diffraction File; Data Cards Inorganic Section; JCPDS: Swarthmore, PA, USA, 1948; Set. 38, Card. 1428.
- Reznichenko, L.A.; Dantsiger, A.Y.; Razumovskaya, O.N.; Dudkina, S.I.; Shilkina, L.A.; Pozdnyakova, I.V.; Servuli, V.A. Ferroelectric elastance of sodium niobate-lithium niobate solid solutions in relation to A-O bond covalence. Tech. Phys. 2000, 45, 1437–1440. [Google Scholar] [CrossRef]
- Reznichenko, L.A.; Shilkina, L.A.; Razumovskaya, O.N.; Dudkina, S.I.; Gagarina, E.S.; Borodinet, A.V. Dielectric and pizoelectric properties of NaNbO3-based solid solutions. Inorg. Mater. 2003, 39, 139–150. [Google Scholar] [CrossRef]
- Okadzaki, K. Technology of Technical Dielectrics; Energy: Moscow, Russia, 1976. [Google Scholar]
- IEEE. IEEE Standard on Piezoelectricity ANSI/IEEE Std 176-1987; IEEE: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Cao, S.; Xu, J.; Wu, C.; Pawlikowska, E.; Szafran, M.; Gao, F. Microstructure evolution and reaction mechanism of Pb(Zr1/2Ti1/2)O3-Pb(Zn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics with plate-like PbTiO3 template. Ceram. Int. 2021, 47, 470–478. [Google Scholar] [CrossRef]
- Zhao, F.; Ge, T.; Gao, J.; Chen, L.; Liu, X. Transient liquid phase diffusion process for porous mullite ceramics with excellent mechanical properties. Ceram. Int. 2018, 44, 19123–19130. [Google Scholar] [CrossRef]
- Hornstra, J. The role of grain boundary motion in the last stage of sintering. Physica 1961, 27, 342–350. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andryushin, K.; Shilkina, L.; Andryushina, I.; Nagaenko, A.; Moysa, M.; Dudkina, S.; Reznichenko, L. Features of the Structure and Electrophysical Properties of Solid Solutions of the System (1-x-y) NaNbO3-xKNbO3-yCd0.5NbO3. Materials 2021, 14, 4009. https://doi.org/10.3390/ma14144009
Andryushin K, Shilkina L, Andryushina I, Nagaenko A, Moysa M, Dudkina S, Reznichenko L. Features of the Structure and Electrophysical Properties of Solid Solutions of the System (1-x-y) NaNbO3-xKNbO3-yCd0.5NbO3. Materials. 2021; 14(14):4009. https://doi.org/10.3390/ma14144009
Chicago/Turabian StyleAndryushin, Konstantin, Lidiya Shilkina, Inna Andryushina, Alexandr Nagaenko, Maxim Moysa, Svetlana Dudkina, and Larisa Reznichenko. 2021. "Features of the Structure and Electrophysical Properties of Solid Solutions of the System (1-x-y) NaNbO3-xKNbO3-yCd0.5NbO3" Materials 14, no. 14: 4009. https://doi.org/10.3390/ma14144009
APA StyleAndryushin, K., Shilkina, L., Andryushina, I., Nagaenko, A., Moysa, M., Dudkina, S., & Reznichenko, L. (2021). Features of the Structure and Electrophysical Properties of Solid Solutions of the System (1-x-y) NaNbO3-xKNbO3-yCd0.5NbO3. Materials, 14(14), 4009. https://doi.org/10.3390/ma14144009