Structural Features of Y2O2SO4 via DFT Calculations of Electronic and Vibrational Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Experimental Details
2.2. Calculation Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, X.; Liu, X.; Huang, W.; Bettineli, M.; Liu, X. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488–4527. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Atuchin, V.; Molokeev, M.; Oreshonkov, A. Microwave-employed sol–gel synthesis of scheelite-type microcrystalline AgGd(MoO4)2:Yb3+/Ho3+ upconversion yellow phosphors and their spectroscopic properties. Crystals 2020, 10, 1000. [Google Scholar]
- Lim, C.S.; Aleksandrovsky, A.S.; Atuchin, V.V.; Molokeev, M.S.; Oreshonkov, A.S. Microwave sol-gel synthesis, microstructural and spectroscopic properties of scheelite-type ternary molybdate upconversion phosphor NaPbLa(MoO4)3:Er3+/Yb3+. J. Alloys Compd. 2020, 826, 152095. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.S.; Aleksandrovsky, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; Atuchin, V.V. Microwave synthesis and spectroscopic properties of ternary scheelite-type molybdate phosphors NaSrLa(MoO4)3:Er3+,Yb3+. J. Alloys Compd. 2017, 713, 156–163. [Google Scholar] [CrossRef]
- Lim, C.S.; Atuchin, V.V.; Aleksandrovsky, A.S.; Denisenko, Y.G.; Molokeev, M.S.; Oreshonkov, A.S. Fabrication of microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ phosphors and their upconversion photoluminescent characteristics. Korean J. Mater. Res. 2019, 29, 741–746. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Microwave sol–gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4:Er3+/Yb3+ phosphors with incommensurately modulated structure. J. Solid State Chem. 2015, 228, 160–166. [Google Scholar] [CrossRef]
- Otsuka, T.; Brehl, M.; Cicconi, M.R.; de Lighy, D.; Hayakawa, T. Thermal evolutions to glass-ceramics bearing calcium tungstate crystals in borate glasses doped with photoluminescent Eu3+ ions. Materials 2021, 14, 952. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Song, Z.; Liu, Q. Color-tunable persistent luminescence of Ca10M(PO4)7:Eu2+ (M = Li, Na, and K) with a β-Ca3(PO4)2-Type Structure. Inorg. Chem. 2021, 60, 3952–3960. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.; Jiang, L.; Pang, R.; Zhang, S.; Li, D.; Liu, G.; Li, C.; Feng, J.; Zhang, H. Synthesis, structure and optical properties of novel thermally robust Dy3+-doped Ca9Sc(PO4)7 phosphors for NUV-excited white LEDs. J. Rare Earth. 2021, 39, 277–283. [Google Scholar] [CrossRef]
- Dahiya, M.; Siwach, A.; Dalai, M.; Kumar, D. Study of structural and luminescent characteristics of novel color tunable blue-green Tb3+-doped Na3Y(PO4)2 nanoparticles for NUV-based WLEDs. J. Mater. Sci: Mater. Electron. 2021, 32, 4166–4176. [Google Scholar]
- Zhai, B.; Xu, H.; Huang, Y.M. Annealing temperature dependent afterglow of Tb3+ doped CaAl2O4. Opt. Mater. 2021, 112, 110739. [Google Scholar] [CrossRef]
- Singh, M.N.; Barua, A.G.; Gartia, R.K. Thermoluminescence studies of Tm doped nanocrystalline Calcium Aluminate (CaAl2O4:Tm3+). Optik 2021, 228, 166151. [Google Scholar] [CrossRef]
- Shivaramu, N.J.; Coetsee, E.; Roos, W.D.; Nagabhushana, K.R.; Swart, H.C. Charge carrier trapping processes in un-doped and BaAl2O4:Eu3+ nanophosphor for thermoluminescent dosimeter applications. J. Phys. D Appl. Phys. 2020, 53, 475305. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, P.; Zhu, Z.; Li, T.; Yang, Y. Pr3+ doped Li2SrSiO4: An efficient visible-ultraviolet C up-conversion phosphor. Ceram. Int. 2021, 47, 4858–4863. [Google Scholar] [CrossRef]
- Shinde, V.V.; Tiwari, A.; Dhoble, S.J. Synthesis of RE3+ (RE3+ = Ce3+, Dy3+, Eu3+ and Tb3+) activated Gd2SiO5 optoelectronics materials for lighting. J. Mol. Struct. 2020, 1217, 128397. [Google Scholar] [CrossRef]
- Xie, L.; Luo, D.; Zhu, Y.; Xu, C.; Chen, G.-X.; Xu, R.-J.; Zhou, X.-Q.; Li, Y. Monitoring of hydroxyapatite conversion by luminescence intensity and color during mineralization of Sm3+-doped β-dicalcium silicate. J. Lumin. 2020, 226, 117468. [Google Scholar] [CrossRef]
- Xu, G.X.; Lian, J.B.; Wu, N.C.; Zhang, X.; He, J. Co-precipitation synthesis of La2O2SO4:Tb3+ phosphor and its conversion to La2O2S:Tb3+ ceramic scintillator via pressureless sintering in hydrogen. J. Ceram. Sci. Technol. 2018, 9, 345–352. [Google Scholar]
- Silva, I.G.N.; Morais, A.F.; Brito, H.F.; Mustafa, D. Y2O2SO4:Eu3+ nano-luminophore obtained by low temperature thermolysis of trivalent rare earth 5-sulfoisophthalate precursors. Ceram. Int. 2018, 44, 15700–15705. [Google Scholar] [CrossRef]
- Li, X.; Lian, J. Synthesis and characterizations of pompon-like Y2O2SO4:Eu3+ phosphors using a UBHP technique based on UAS system. Optik 2016, 127, 401–406. [Google Scholar] [CrossRef]
- Xing, T.H.; Song, L.X.; Xiong, J.; Cao, H.B.; Du, P.F. Preparation and luminescent properties of Tb3+ doped Y2O2SO4 microflakes. Adv. Appl. Ceram. 2013, 112, 455–459. [Google Scholar] [CrossRef]
- Chen, G.; Chen, F.; Liu, X.; Ma, W.; Luo, H.; Li, J.; Ma, R.; Qiu, G. Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Res. 2014, 7, 1093–1102. [Google Scholar] [CrossRef]
- Oreshonkov, A.S.; Roginskii, E.M.; Shestakov, N.P.; Gudim, I.A.; Temerov, V.L.; Nemtsev, I.V.; Molokeev, M.S.; Adichtchev, S.V.; Pugachev, A.M.; Denisenko, Y.G. Structural, electronic and vibrational properties of YAl3(BO3)4. Materials 2020, 13, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Lin, L.; Wu, T.; Huang, Z.; Zhang, C. Deep-ultraviolet transparent alkali metal–rare earth metal sulfate NaY(SO4)2·H2O as a nonlinear optical crystal: Synthesis and characterization. CrystEngComm 2021, 23, 2945. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Q.; Liu, L.; Lin, Z.; Halasyamani, P.S.; Chen, X.; Qin, J. AgBi(SO4)(IO3)2: Aliovalent substitution induces structure dimensional upgrade and second harmonic generation enhancement. Chem. Commun. 2021, 57, 3712. [Google Scholar] [CrossRef]
- Li, Y.; Liang, F.; Zhao, S.; Li, L.; Wu, Z.; Ding, Q.; Liu, S.; Lin, Z.; Hong, M.; Luo, J. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833–3837. [Google Scholar] [CrossRef]
- Chen, K.; Yang, Y.; Peng, G.; Yang, S.; Yan, T.; Fan, H.; Lin, Z.; Ye, N. A2Bi2(SO4)2Cl4 (A = NH4, K, Rb): Achieving a subtle balance of the large second harmonic generation effect and sufficient birefringence in sulfate nonlinear optical materials. J. Mater. Chem. C 2019, 7, 9900. [Google Scholar] [CrossRef]
- Netzsch, P.; Bariss, H.; Bayarjargal, L.; Höppe, H.A. Tb(HSO4)(SO4)—A green emitting hydrogensulfate sulfate with second harmonic generation response. Dalton Trans. 2019, 48, 16377. [Google Scholar] [CrossRef]
- Golovnev, N.N.; Molokeev, M.S.; Vereshchagin, S.N.; Atuchin, V.V. Synthesis and thermal transformation of a neodymium(III) complex [Nd(HTBA)2(C2H3O2)(H2O)2]·2H2O to non-centrosymmetric oxosulfate Nd2O2SO4. J. Coord. Chem. 2015, 68, 1865–1877. [Google Scholar] [CrossRef]
- Denisenko, Y.G.; Sal’nikova, E.I.; Basova, S.A.; Molokeev, M.S.; Krylov, A.S.; Aleksandrovsky, A.S.; Oreshonkov, A.S.; Atuchin, V.V.; Volkova, S.S.; Khritokhin, N.A.; et al. Synthesis of samarium oxysulfate Sm2O2SO4 in the high-temperature oxidation reaction and its structural, thermal and luminescent properties. Molecules 2020, 25, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denisenko, Y.G.; Molokeev, M.S.; Krylov, A.S.; Aleksandrovsky, A.S.; Oreshonkov, A.S.; Azarapin, N.O.; Plyusnin, P.E.; Sal’nikova, E.I.; Andreev, O.V. High-temperature oxidation of europium (II) sulfide. J. Ind. Eng. Chem. 2019, 79, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Qin, H.; Liang, P.; Liu, F. Co-precipitation synthesis of Y2O2SO4:Eu3+ nanophosphor and comparison of photoluminescence properties with Y2O3:Eu3+ and Y2O2S:Eu3+ nanophosphors. Solid State Sci. 2015, 48, 147–154. [Google Scholar] [CrossRef]
- Song, L.; Shao, X.; Du, P.; Cao, H.; Hui, Q.; Xing, T.; Xiong, J. A facile preparation and the luminescent properties of Eu3+-doped Y2O2SO4 nanopieces. Mater. Res. Bull. 2013, 48, 4896–4900. [Google Scholar] [CrossRef]
- Shafaie, F.; Hadadzadech, H.; Behnamfar, M.T.; Rudbari, H.A. Electrocatalytic activity of a mononuclear yttrium(III)-methyl orange complex and Y2O2SO4 nanoparticles for adsorption/desorption of hydrogen. Mater. Chem. Phys. 2016, 184, 222–232. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 1981, 23, 5048. [Google Scholar] [CrossRef] [Green Version]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566. [Google Scholar] [CrossRef] [Green Version]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Corso, A.D.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Li, Z.; Wang, W.; She, J. Vibrational properties and Raman spectra of pristine and fluorinated blue phosphorene. Phys. Chem. Chem. Phys. 2019, 21, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillonin-zone integrations. Phys. Rev. B. 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P. Density functional theory and the band gap problem. Int. J. Quantum Chem. 1986, 19, 497–523. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
Lattice Dimensions, Å | a | b | c |
---|---|---|---|
Calc. (this work) | 13.1242 | 4.0956 | 7.8734 |
ICDD PDF 53-0168 | 13.3076 | 4.1465 | 8.0204 |
Lattice Angles, Degrees | α, γ | β | |
Calc. (this work) | 90 | 107.292 | |
ICDD PDF 53-0168 | 90 | 107.64 | |
Fractional Coordinates | x | y | z |
Y | 0.17153 | 0.48979 | 0.08471 |
O1 | 0.24427 | 0.97988 | 0.12243 |
O2 | 0.9997 | 0.26714 | 0.09789 |
O3 | 0.09659 | 0.84802 | 0.29921 |
S | 0 | 0.05146 | 0.25 |
Wavenumber, cm−1 [44] | Td | C2 | C2h |
---|---|---|---|
983 | A1 (ν1) | A | Ag + Au |
450 | E (ν2) | 2A | 2Ag + 2Au |
1105 | F2 (ν3) | A+2B | Ag + Au + 2Bg + 2Bu |
611 | F2 (ν4) | A+2B | Ag + Au + 2Bg + 2Bu |
Infrared | Raman | ||||||
---|---|---|---|---|---|---|---|
Irreps. | Calc | Exp | Assignment | Irreps. | Calc | Exp | Assignment |
Bu | 1155.6 | 1219 | ν3 SO4 | Bg | 1154.3 | 1180 | ν3 SO4 |
Au | 1095.9 | 1133 | Bg | 1123.3 | 1142 | ||
Bu | 1030.4 | 1063 | Ag | 1096.3 | 1118 | ||
Au | 969.0 | 1002 | ν1 SO4 | Ag | 980.0 | 1009 | ν1 SO4 |
Bu | 636.0 | 666 | ν4 SO4 | Bg | 632.0 | 651 | ν4 SO4 |
Bu | 592.1 | 621 | Bg | 629.3 | 648 | ||
Au | 581.9 | 608 | Ag | 584.3 | 604 | ||
Au | 546.7 | ν2 SO4 + O1-O1 str. | Bg | 533.1 | 500 | O1-O1 str. | |
Bu | 499.1 | 532 | O1 tr. | Ag | 505.3 | 480 | O1 tr. |
Au | 481.7 | ν2 SO4 + O1-O1 str. | Bg | 492.9 | 448 | O1-O1 str. | |
Au | 461.9 | ν2 SO4 | Ag | 492.6 | 448 | ν2 SO4 | |
Au | 429.2 | O1 tr. | Ag | 476.2 | 432 | ν2 SO4 | |
Bu | 416.3 | O1 tr. | Ag | 453.6 | 416 | ν2 SO4 + O1-O1 str. | |
Bu | 378.8 | O1 tr. | Bg | 383.2 | 374 | O1-O1 tr. | |
Au | 334.3 | O1 tr. | Ag | 352.5 | 344 | O1-O1 tr. | |
Au | 260.3 | Y tr. | Bg | 275.5 | SO4 def. | ||
Bu | 231.2 | SO4 rot. | Ag | 248.3 | 240 | Y tr. | |
Bu | 216.2 | SO4 rot. | Bg | 240.2 | Y tr. | ||
Au | 191.3 | SO4 rot. | Bg | 207.7 | SO4 tr. | ||
Bu | 187.4 | SO4 tr. | Bg | 203.1 | SO4 tr. | ||
Bu | 157.7 | SO4 tr. | Ag | 202.1 | 195 | SO4 rot. | |
Au | 151.6 | SO4 def. | Ag | 188.8 | SO4 tr. | ||
Bu | 131.6 | SO4 tr. | Bg | 184.7 | SO4 rot. + tr. | ||
Au | 96.7 | Y tr. | Ag | 172.5 | 172 | Y tr. | |
Bg | 161.2 | 168 | SO4 tr. | ||||
Ag | 151.9 | Y tr. | |||||
Bg | 120.0 | SO4 tr. + [Y2O22+] tr. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oreshonkov, A.S.; Denisenko, Y.G. Structural Features of Y2O2SO4 via DFT Calculations of Electronic and Vibrational Properties. Materials 2021, 14, 3246. https://doi.org/10.3390/ma14123246
Oreshonkov AS, Denisenko YG. Structural Features of Y2O2SO4 via DFT Calculations of Electronic and Vibrational Properties. Materials. 2021; 14(12):3246. https://doi.org/10.3390/ma14123246
Chicago/Turabian StyleOreshonkov, Aleksandr S., and Yuriy G. Denisenko. 2021. "Structural Features of Y2O2SO4 via DFT Calculations of Electronic and Vibrational Properties" Materials 14, no. 12: 3246. https://doi.org/10.3390/ma14123246
APA StyleOreshonkov, A. S., & Denisenko, Y. G. (2021). Structural Features of Y2O2SO4 via DFT Calculations of Electronic and Vibrational Properties. Materials, 14(12), 3246. https://doi.org/10.3390/ma14123246