Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konrad, C.; Zhang, Y.; Xiao, B. Analysis of melting and resolidification in a two-component metal powder bed subjected to temporal Gaussian heat flux. Int. J. Heat Mass Transf. 2005, 48, 3932–3944. [Google Scholar] [CrossRef]
- Konrad, C.; Zhang, Y.; Shi, Y. Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating. Int. J. Heat Mass Transf. 2007, 50, 2236–2245. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Yadroitsev, I.; Bertrand, P.; Smurov, I. Heat transfer modelling and stability analysis of selective laser melting. Appl. Surf. Sci. 2007, 254, 975–979. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Delahaye, J.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Rigo, O.; Habraken, A.M.; Mertens, A. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta Mater. 2019, 175, 160–170. [Google Scholar] [CrossRef]
- Kleiner, S.; Zürcher, J.; Bauer, O.; Margraf, P. Heat treatment response of selectively laser melted AlSi10Mg. HTM 2020, 75, 327–341. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Doubenskaia, M.A.; Zhirnov, I.V.; Teleshevskiy, V.I.; Bertrand, P.; Smurov, I.Y. Determination of true temperature in selective laser melting of metal powder using infrared camera. Mater. Sci. Forum. 2015, 834, 93–102. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, X.J.; Saunders, M.; Suvorova, A.; Zhang, L.C.; Liu, Y.J.; Fang, M.H.; Huang, Z.H.; Sercombe, T.B. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015, 74–82. [Google Scholar] [CrossRef]
- Farshidianfar, M.H.; Khajepour, A.; Gerlich, A.P. Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing. J. Mater. Process Technol. 2016, 231, 468–478. [Google Scholar] [CrossRef]
- Hooper, P.A. Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 2018, 22, 548–559. [Google Scholar] [CrossRef]
- Trivedi, R. The role of heterogeneous nucleation on microstructure evolution in peritectic systems. Scr. Mater. 2005, 53, 47–52. [Google Scholar] [CrossRef]
- Gremaud, M.; Allen, D.R.; Rappaz, M.; Perepezko, J.H. The development of nucleation controlled microstructures during laser treatment of Al-Si alloys. Acta Mater. 1996, 44, 2669–2681. [Google Scholar] [CrossRef]
- Wilde, G.; Sebright, J.L.; Perepezko, J.H. Bulk liquid undercooling and nucleation in gold. Acta Mater. 2006, 54, 4759–4769. [Google Scholar] [CrossRef]
- Gandin, C.-A.; Mosbah, S.; Volkmann, T.; Herlach, D.M. Experimental and numerical modeling of equiaxed solidification in metallic alloys. Acta Mater. 2008, 56, 3023–3035. [Google Scholar] [CrossRef]
- Trivedi, R.; Jin, F.; Anderson, I.E. Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys. Acta Mater. 2003, 51, 289–300. [Google Scholar] [CrossRef]
- Das, S.K.; Perepezko, J.H.; Wu, R.I.; Wilde, G. Undercooling and glass formation in Al-based alloys. Mater. Sci. Eng. A 2001, 304–306, 159–165. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Sebright, J.L.; Höckel, P.G.; Wilde, G. Undercooling and solidification of atomized liquid droplets. Mater. Sci. Eng. A 2002, 326, 144–153. [Google Scholar] [CrossRef]
- Perepezko, J.H.; LeBeau, S.E.; Mueller, B.A.; Hildeman, G.J. Rapid solidification of highly undercooled aluminum powders. In Rapidly Solidified Powder Aluminum Alloys; Fine, M.E., Starke, E.A., Eds.; ASTM International: West Conshohocken, PA, USA, 1986; pp. 118–136. ISBN 978-0-8031-4961-8. [Google Scholar]
- Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 2010, 50, 1–13. [Google Scholar] [CrossRef]
- Yang, B.; Peng, Q.; Milkereit, B.; Springer, A.; Liu, D.; Rettenmayr, M.; Schick, C.; Keßler, O. Nucleation behaviour and microstructure of single Al-Si12 powder particles rapidly solidified in a fast scanning calorimeter. J. Mater. Sci. 2021, 56, 12881–12897. [Google Scholar] [CrossRef]
- Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) system. Bull. Alloy. Phase Diagr. 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Weck, E.; Leistner, E. Metallographic Instructions for Colour Etching by Immersion, Part III: Non-Ferrous Metals, Cemented Carbides and Ferrous Metals, Nickel-Base and Cobalt-Base Alloys; Deutscher Verlag für Schweißtechnik: Düsseldorf, Germany, 1986. [Google Scholar]
- Milkereit, B.; Meißner, Y.; Ladewig, C.; Osten, J.; Yang, B.; Springer, A.; Keßler, O. Metallographische Präparation einzelner Pulver-Partikel. Prakt. Metallogr. 2021, 58, 129–139. [Google Scholar] [CrossRef]
- Uttormark, M.J.; Zanter, J.W.; Perepezko, J.H. Repeated nucleation in an undercooled aluminum droplet. J. Cryst. Growth 1997, 177, 258–264. [Google Scholar] [CrossRef]
- Yang, B.; Gao, Y.; Zou, C.; Zhai, Q.; Zhuravlev, E.; Schick, C. Repeated nucleation in an undercooled tin droplet by fast scanning calorimetry. Mater. Lett. 2009, 63, 2476–2478. [Google Scholar] [CrossRef]
- Bokeloh, J.; Rozas, R.E.; Horbach, J.; Wilde, G. Nucleation barriers for the liquid-to-crystal transition in Ni: Experiment and simulation. Phys. Rev. Lett. 2011, 107, 145701. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Gao, J.; Mao, Y.; Wilde, G. Fast scanning calorimetric study of nucleation rates and nucleation transitions of Au-Sn alloys. Scr. Mater. 2017, 139, 13–16. [Google Scholar] [CrossRef]
- NIST. Chemistry WebBook: NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [Google Scholar]
- Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 1950, 21, 1022–1028. [Google Scholar] [CrossRef]
- Gutzow, I.; Schmelzer, J.W.P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization; Springer: Berlin, Germany, 1995. [Google Scholar]
- Iwamatsu, M. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity. Langmuir 2015, 31, 3861–3868. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.V.; Spaepen, F. Homogeneous crystal nucleation in binary metallic melts. Acta Metall. 1983, 31, 2021–2027. [Google Scholar] [CrossRef]
- Korb, L.J.; Olson, D.L. ASM Handbook: Corrosion; ASM International: Materials Park, OH, USA, 1992. [Google Scholar]
- Cantor, B. Heterogeneous nucleation and adsorption. Philos. Trans. R. Soc. A 2003, 361, 409–417. [Google Scholar] [CrossRef]
- Kalay, Y.E.; Chumbley, L.S.; Anderson, I.E.; Napolitano, R.E. Characterization of hypereutectic Al-Si powders solidified under far-from equilibrium conditions. Metall. Mater. Trans. A 2007, 38, 1452–1457. [Google Scholar] [CrossRef] [Green Version]
- Gündüz, M.; Hunt, J.D. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems. Acta Metall. 1985, 33, 1651–1672. [Google Scholar] [CrossRef]
- Faraji, M. The Effect of Solidification Variables on the Microstructure of Hypereutectic Al-Si Alloys. Ph.D. Thesis, The University of Sheffield, Sheffield, UK, 2007. [Google Scholar]
Alloy | Si | Fe | Mg | Ag | Ti | Cu | Al |
---|---|---|---|---|---|---|---|
Al-20Si | 20% | 0.27% | 0.07% | 0.03% | 0.02% | 0.02% | Bal. |
Parameters | Value |
---|---|
Liquidus temperature (Si), TlSi | 684 °C [24] |
Liquidus temperature (Al), TlAl | 597 °C [24] |
Liquid diffusivity, Dl | 5 × 10−9 m2/s [38] |
Interfacial energy (Al in Al-Si system), σslAl | 0.169 J/m2 [39] |
Interfacial energy (Si in Al-Si system), σslSi | 0.352 J/m2 [39] |
Atomic spacing (Al), a0Al | 2.6 × 10−10 m (pure Al) [27] |
Atomic spacing (Si), a0Si | 3.0 × 10−10 m (Si atomic diameter) [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Yang, B.; Milkereit, B.; Liu, D.; Springer, A.; Rettenmayr, M.; Schick, C.; Keßler, O. Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials 2021, 14, 2920. https://doi.org/10.3390/ma14112920
Peng Q, Yang B, Milkereit B, Liu D, Springer A, Rettenmayr M, Schick C, Keßler O. Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials. 2021; 14(11):2920. https://doi.org/10.3390/ma14112920
Chicago/Turabian StylePeng, Qin, Bin Yang, Benjamin Milkereit, Dongmei Liu, Armin Springer, Markus Rettenmayr, Christoph Schick, and Olaf Keßler. 2021. "Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter" Materials 14, no. 11: 2920. https://doi.org/10.3390/ma14112920
APA StylePeng, Q., Yang, B., Milkereit, B., Liu, D., Springer, A., Rettenmayr, M., Schick, C., & Keßler, O. (2021). Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials, 14(11), 2920. https://doi.org/10.3390/ma14112920