Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Yu, G.; Hou, G.; Zhang, C.; Jiang, C. Seamless multiband near-infrared emission covering 1200–2100 nm with double wavelength excitations. OSA Contin. 2019, 2, 2623–2629. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Y.; Ding, J.; Li, C.; Shen, X.; Zhou, Y. Er3+/Tm3+/Nd3+ tri-doping tellurite glass with ultra-wide NIR emission. J. Alloys Compd. 2021, 863, 158626. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Xia, L.; Li, J.; Yang, G.; Zhou, Y. Dual super-broadband NIR emissions in Pr3+-Er3+-Nd3+ tri-doped tellurite glass. Ceram. Int. 2020, 46, 14284–14286. [Google Scholar] [CrossRef]
- Dan, H.K.; Ty, N.M.; Nga, V.H.; Phuc, D.T.; Phan, A.-L.; Zhou, D.; Qiu, J. Broadband flat near-infrared emission and energy transfer of Pr3+–Er3+–Yb3+ tri-doped niobate tellurite glasses. J. Non Cryst. Solids 2020, 549, 120335. [Google Scholar] [CrossRef]
- Chu, Y.; Ren, J.; Zhang, J.; Peng, G.; Yang, J.; Wang, P.; Yuan, L. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: A potential fiber material for broadband near-infrared fiber amplifiers. Sci. Rep. 2016, 6, 33865. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.; Guo, Y.; Tian, Y.; Hu, L.; Zhang, J. Light emission at 2 µm from Ho–Tm–Yb doped silicate glasses. Opt. Mater. 2011, 33, 1316–1319. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, F.; Hu, L.; Zhang, J. Efficient 2.05 µm emission of Ho3+/Yb3+/Er3+ triply doped fluorotellurite glasses. Spectrochim. Acta A 2014, 122, 711–714. [Google Scholar] [CrossRef]
- Xu, S.; Ma, H.; Fang, D.; Zhang, Z.; Jiang, Z. Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glasses as materials for three-dimensional display. Mater. Lett. 2005, 59, 3066–3068. [Google Scholar] [CrossRef]
- Liao, M.; Hu, L.; Fang, Y.; Zhang, J.; Sun, H.; Xu, S.; Zhang, L. Upconversion properties of Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses. Spectrochim. Acta A 2007, 68, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yu, J.; Jiang, W.; Liu, Y.; Ai, F.; Wen, H.; Jiang, M.; Yu, H.; Pan, X.; Tang, M.; et al. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method. Opt. Mater. 2017, 72, 447–451. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Zheng, K.; Guo, T.; Yu, Y.; Huang, P. Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals. Appl. Phys. Lett. 2007, 91, 251903. [Google Scholar] [CrossRef]
- Santana-Alonso, A.; Méndez-Ramos, J.; Yanes, A.C.; del-Castillo, J.; Rodríguez, V.D. White light up-conversion in transparent sol–gel derived glass-ceramics containing Yb3+–Er3+–Tm3+ triply-doped YF3 nanocrystals. Mater. Chem. Phys. 2010, 124, 699–703. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, J.; Song, Z.; Yang, Z.; Yang, Y.; Zhou, D.; Jiao, Q.; Ma, C. Spectroscopic properties of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses containing silver nanoparticles. J. Lumin. 2014, 145, 512–517. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, J.; Song, Z.; Zhou, D. Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses. J. Appl. Phys. 2014, 115, 083512. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Qiu, J.; Brik, M.G.; Kumar, G.A.; Kityk, I.V. Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2–ZnO–WO3–TiO2–Na2O glasses. J. Phys. Condens. Matter 2008, 20, 375101. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirov, V.K.; Driesen, K.; Görller-Walrand, C.; Mortier, M. Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics. Opt. Express 2007, 15, 9535–9540. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirov, V.K.; Driesen, K.; Görller-Walrand, C.; Mortier, M. Mid-infrared emission in Yb3+–Er3+–Tm3+ co-doped oxyfluoride glass-ceramics. Mater. Sci. Eng. B 2008, 146, 66–68. [Google Scholar] [CrossRef]
- Wachtler, M.; Speghini, A.; Gatterer, K.; Fritzer, H.P.; Ajo, D.; Bettinelli, M. Optical properties of rare-earth ions in lead germanate glasses. J. Am. Ceram. Soc. 1998, 81, 2045–2052. [Google Scholar] [CrossRef]
- Klimesz, B.; Dominiak-Dzik, G.; Lisiecki, R.; Ryba-Romanowski, W. Systematic study of spectroscopic properties and thermal stability of lead germanate glass doped with rare-earth ions. J. Non Cryst. Solids 2008, 354, 515–520. [Google Scholar] [CrossRef]
- Khalid, M.; Lancaster, D.G.; Ebendorff-Heidepriem, H. Spectroscopic analysis and laser simulations ofYb3+/Ho3+co-doped lead-germanate glass. Opt. Mater. Express 2020, 10, 2819–2833. [Google Scholar] [CrossRef]
- Wang, P.; Bei, J.; Ahmed, N.; Ng, A.K.L.; Ebendorff-Heidepriem, H. Development of low-loss lead-germanate glass for mid-infrared fiber optics: I. glass preparation optimization. J. Am. Ceram. Soc. 2021, 104, 860–876. [Google Scholar] [CrossRef]
- Wang, P.; Ng, A.K.L.; Dowler, A.; Ebendorff-Heidepriem, H. Development of low-loss lead-germanate glass for mid-infrared fiber optics: II. preform extrusion and fiber fabrication. J. Am. Ceram. Soc. 2021, 104, 833–850. [Google Scholar] [CrossRef]
- Munasinghe, H.T.; Winterstein-Beckmann, A.; Schiele, C.; Manzani, D.; Wondraczek, L.; Afshar, V.S.; Monro, T.M.; Ebendorff-Heidepriem, H. Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications. Opt. Mater. Express 2013, 3, 1488–1503. [Google Scholar] [CrossRef] [Green Version]
- Cacho, V.D.D.; Kassab, L.R.P.; de Oliveira, S.L.; Morimoto, N.I. Blue cooperative emissions in Yb3+-doped GeO2–PbO glasses. Mater. Res. 2006, 9, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Cacho, V.D.D.; Kassab, L.R.P.; de Oliveira, S.L.; Verdonck, P. Near infrared and blue cooperative emissions in Yb3+-doped GeO2–PbO glasses. J. Non Cryst. Solids 2006, 352, 56–62. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, Z.; Liu, Y.; Deng, Z. Radiative trapping effect of Yb3+ ions in lead-germanate glasses. J. Mater. Sci. 2006, 41, 6174–6177. [Google Scholar] [CrossRef]
- Pan, Z.; Morgan, S.H.; Dyer, K.; Ueda, A.; Liu, H. Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses. J. Appl. Phys. 1996, 79, 8906–8913. [Google Scholar] [CrossRef]
- Balda, R.; Garcia-Adeva, A.J.; Fernandez, J.; Fdez-Navarro, J.M. Infrared-to-visible upconversion of Er3+ ions in GeO2–PbO–Nb2O5 glasses. J. Opt. Soc. Am. B 2004, 21, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Balda, R.; Fernandez, J.; Arriandiaga, M.A.; Fdez-Navarro, J.M. Infrared to visible upconversion of Er3+ and Er3+/Yb3+ codoped lead–niobium–germanate glasses. Opt. Mater. 2004, 25, 157–163. [Google Scholar] [CrossRef]
- Shepherd, D.P.; Brinck, D.J.B.; Wang, J.; Tropper, A.C.; Hanna, D.C. 1.9-µm operation of a Tm:lead germanate glass waveguide laser. Opt. Lett. 1994, 19, 954–956. [Google Scholar] [CrossRef] [Green Version]
- Balda, R.; Lacha, L.M.; Fernandez, J.; Fdez-Navarro, J.M. Optical spectroscopy of Tm3+ ions in GeO2–PbO–Nb2O5 glasses. Opt. Mater. 2005, 27, 1771–1775. [Google Scholar] [CrossRef]
- Bomfim, F.A.; Martinelli, J.R.; Kassab, L.R.P.; Wetter, N.U.; Neto, J.J. Effect of the ytterbium concentration on the upconversion luminescence of Yb3+/Er3+ co-doped PbO–GeO2–Ga2O3 glasses. J. Non Cryst. Solids 2008, 354, 4755–4759. [Google Scholar] [CrossRef]
- Kassab, L.R.P.; Bomfim, F.A.; Martinelli, J.R.; Wetter, N.U.; Neto, J.J.; de Araújo, C.B. Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Appl. Phys. B 2009, 94, 239–242. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors. Sens. Actuat. A 2016, 252, 54–58. [Google Scholar] [CrossRef]
- Assumpção, T.A.A.; da Silva, D.M.; Kassab, L.R.P.; de Araújo, C.B. Frequency upconversion luminescence from Yb+3–Tm+3 codoped PbO–GeO2 glasses containing silver nanoparticles. J. Appl. Phys. 2009, 106, 063522. [Google Scholar] [CrossRef] [Green Version]
- de Assumpção, T.A.A.; da Silva, D.M.; Kassab, L.R.P.; Martinelli, J.R.; de Araújo, C.B. Influence of the temperature on the nucleation of silver nanoparticles in Tm3+/Yb3+ codoped PbO–GeO2 glasses. J. Non Cryst. Solids 2010, 356, 2465–2467. [Google Scholar] [CrossRef]
- Gouveia-Neto, A.S.; Bueno, L.A.; do Nascimento, R.F.; da Silva, E.A.; da Costa, E.B.; do Nascimento, V.B. White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass. Appl. Phys. Lett. 2007, 91, 091114. [Google Scholar] [CrossRef]
- Camilo, M.E.; de Silva, E.O.; Assumpção, T.A.A.; Kassab, L.R.P.; de Araújo, C.B. White light generation in Tm3+/Ho3+/Yb3+ doped PbO-GeO2 glasses excited at 980 nm. J. Appl. Phys. 2013, 114, 163515. [Google Scholar] [CrossRef] [Green Version]
- Camilo, M.E.; de Silva, E.O.; Kassab, L.R.P.; Garcia, J.A.M.; de Araújo, C.B. White light generation controlled by changing the concentration of silver nanoparticles hosted by Ho3+/Tm3+/Yb3+ doped GeO2–PbO glasses. J. Alloys Compd. 2015, 644, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Gouveia-Neto, A.S.; da Costa, E.B.; dos Santos, P.V.; Bueno, L.A.; Ribeiro, S.J.L. Sensitized thulium blue upconversion emission in Nd3+/Tm3+/Yb3+ triply doped lead and cadmium germanate glass excited around 800 nm. J. Appl. Phys. 2003, 94, 5678–5681. [Google Scholar] [CrossRef] [Green Version]
- Camilo, M.E.; Assumpção, T.A.A.; da Silva, D.M.; da Silva, D.S.; Kassab, L.R.P.; de Araújo, C.B. Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+ doped GeO2-PbO glass. J. Appl. Phys. 2013, 113, 153507. [Google Scholar] [CrossRef]
- Rivera, V.A.G.; El-Amraoui, M.; Ledemi, Y.; Messaddeq, Y.; Marega, E., Jr. Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses. J. Lumin. 2014, 145, 787–792. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D.; Wang, W.; Zhang, Q.; Zeng, H.; Shen, C.; Chen, G. Broadband near-infrared emission in Er3+–Tm3+ codoped chalcohalide glasses. Opt. Lett. 2008, 33, 2293–2295. [Google Scholar] [CrossRef]
- Balda, R.; Fernández, J.; Fernández-Navarro, J.M. Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses. Opt. Express 2009, 17, 8781–8788. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Pun, E.Y.B. Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+-codoped low phonon energy gallate bismuth lead glasses. J. Phys. D Appl. Phys. 2011, 44, 285404. [Google Scholar] [CrossRef]
- Miguel, A.; Arriandiaga, M.A.; Morea, R.; Fernandez, J.; Gonzalo, J.; Balda, R. Effect of Tm3+ codoping on the near-infrared and upconversion emissions of Er3+ in TeO2–ZnO–ZnF2 glasses. J. Lumin. 2014, 154, 136–141. [Google Scholar] [CrossRef]
- Xu, R.; Tian, Y.; Wang, M.; Hu, L.; Zhang, J. Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses. Opt. Mater. 2011, 33, 299–302. [Google Scholar] [CrossRef]
- Huang, L.; Shen, S.; Jha, A. Near infrared spectroscopic investigation of Tm3+–Yb3+ co-doped tellurite glasses. J. Non Cryst. Solids 2004, 345, 349–353. [Google Scholar] [CrossRef]
- Liu, Y.; Pisarski, W.A.; Zeng, S.; Xu, C.; Yang, Q.B. Tri-color upconversion luminescence of rare earth doped BaTiO3 nanocrystals and lowered color separation. Opt. Express 2009, 17, 9089–9098. [Google Scholar] [CrossRef]
- Xu, F.; Serna, R.; Jiménez de Castro, M.; Fernández Navarro, J.M.; Xiao, Z. Broadband infrared emission of erbium–thulium-codoped calcium boroaluminate glasses. Appl. Phys. B 2010, 99, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Suresh, K.; Krishnaiah, K.V.; Basavapoornima, C.; Depuru, S.R.; Jayasankar, C.K. Enhancement of 1.8 µm emission in Er3+/Tm3+ co-doped tellurite glasses: Role of energy transfer and dual wavelength pumping schemes. J. Alloys Compd. 2020, 827, 154038. [Google Scholar] [CrossRef]
Glass Code | Luminescence Lifetime (µs) | |||
---|---|---|---|---|
3H4 (Tm3+) | 2F5/2 (Yb3+) | 4I13/2 (Er3+) | 3F4 (Tm3+) | |
(a) 0.5 Tm | 128 | 201 | – | 1440 |
(b) 0.5 Tm − 0.5 Er | 103 | 165 | 1595 | 1620 |
(c) 0.5 Tm − 1.5 Er | 53 | 109 | 646 | 1229 |
(d) 1.5 Tm | 72 | 130 | – | 996 |
(e) 1.5 Tm − 0.5 Er | 68 | 134 | 888 | 1260 |
(f) 1.5 Tm − 1.5 Er | 62 | 128 | 775 | 1527 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarski, W.A.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+. Materials 2021, 14, 2901. https://doi.org/10.3390/ma14112901
Pisarski WA, Pisarska J, Lisiecki R, Ryba-Romanowski W. Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+. Materials. 2021; 14(11):2901. https://doi.org/10.3390/ma14112901
Chicago/Turabian StylePisarski, Wojciech A., Joanna Pisarska, Radosław Lisiecki, and Witold Ryba-Romanowski. 2021. "Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+" Materials 14, no. 11: 2901. https://doi.org/10.3390/ma14112901
APA StylePisarski, W. A., Pisarska, J., Lisiecki, R., & Ryba-Romanowski, W. (2021). Broadband Near-Infrared Luminescence in Lead Germanate Glass Triply Doped with Yb3+/Er3+/Tm3+. Materials, 14(11), 2901. https://doi.org/10.3390/ma14112901