3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Si/SiO2/GO Dispersion
2.2. Preparation of Si/SiO2/rGO Film
2.3. Preparation of Free-Standing Si/void/rGO Electrode
2.4. Materials Characterization
2.5. Electrochemical Analysis
3. Results and Discussion
3.1. Structural Characterization
3.2. Evaluation of Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.L.; Jiang, H.; Hu, Y.J.; Shen, J.H.; Li, C.Z. Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395–5401. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Wang, Y.H.; Ren, W.F.; Tan, Q.Q.; Chen, Y.F.; Li, H.; Zhong, Z.Y.; Su, F.B. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem. 2014, 53, 5165–5169. [Google Scholar]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yi, H.; Kim, W.-J.; Kang, K.; Yun, D.S.; Strano, M.S.; Ceder, G.; Belcher, A.M. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 2009, 324, 1051–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Yoshio, M.; Wang, H.Y.; Fukuda, K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. 2003, 42, 4203–4206. [Google Scholar] [CrossRef]
- Liu, N.; Wu, H.; McDowell, M.T.; Yao, Y.; Wang, C.M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, T.; Yamada, J.; Kato, H. Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J. Power Sources 2016, 306, 8–16. [Google Scholar] [CrossRef]
- Agyeman, D.A.; Song, K.; Lee, G.-H.; Park, M.; Kang, Y.-M. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion Battery. Adv. Energy Mater. 2016, 6, 1600904–1600913. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, B.; Lu, Z.D.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715–1700731. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M.; Liu, Y.; Du, C.Y.; Ren, Y.; Mu, T.S.; Zuo, P.J.; Yin, G.P.; Ma, Y.L.; Cheng, X.Q.; Gao, Y.Z. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 2018, 381, 156–163. [Google Scholar] [CrossRef]
- Evanoff, K.; Magasinski, A.; Yang, J.B.; Yushin, G. Nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv. Energy Mater. 2011, 1, 495–498. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.F.; Xiong, J.; Yang, T.Z.; Qin, Y.; Yan, C.L. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 2015, 25, 6701–6709. [Google Scholar] [CrossRef]
- Polat, B.D.; Eryilmaz, O.L.; Chen, Z.H.; Keles, O.; Amine, K. High capacity anode with well-aligned, ordered NiSi nano-columnar arrays. Nano Energy 2015, 13, 781–789. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, X.R. Investigation of the chemo-mechanical coupling in lithiation/delithiation of amorphous Si through simulations of Si thin films and Si nanospheres. J. Power Sources 2016, 326, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Varoon, K.; Zhang, X.Y.; Elyassi, B.; Brewer, B.B.; Gettel, M.; Kumar, S.; Lee, J.A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, B.; Kim, H.; Cho, Y.; Lee, K.T.; Choi, N.-S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. 2012, 51, 8762–8767. [Google Scholar] [CrossRef] [PubMed]
- Gunes, F. A direct synthesis of Si-nanowires on 3D porous graphene as a high performance anode material for Li-ion batteries. RSC Adv. 2016, 6, 1678–1685. [Google Scholar] [CrossRef]
- Zhou, X.M.; Liu, Y.; Du, C.Y.; Ren, Y.; Li, X.L.; Zuo, P.J.; Yin, G.P.; Ma, Y.L.; Cheng, X.Q.; Gao, Y.Z. Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 29638–29646. [Google Scholar] [CrossRef]
- Zhao, X.; Hayner, C.M.; Kung, M.C.; Kung, H.H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 2011, 1, 1079–1084. [Google Scholar] [CrossRef]
- Akbulut, H.; Nalci, D.; Guler, A.; Duman, S.; Guler, M.O. Carbon-silicon composite anode electrodes modified with MWCNT for high energy battery applications. Appl. Surf. Sci. 2018, 446, 222–229. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhang, K.B.; Jia, K.L.; He, X.F.; Liu, G.Y.; Wang, W.; Zhang, Y.L.; Qiu, J.S. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film. CIESC J. 2019, 70, 1144–1151. [Google Scholar]
- Xu, Q.; Sun, J.-K.; Yu, Z.-L.; Yin, Y.-X.; Xin, S.; Yu, S.-H.; Guo, Y.-G. SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Adv. Mater. 2018, 30, 1707430–1707435. [Google Scholar] [CrossRef] [PubMed]
- Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Shen, L.M.; Bao, N.Z. Revisiting the oxidation of graphite: Reaction mechanism, chemical stability, and structure self-regulation. ACS Omega 2020, 5, 3397–3404. [Google Scholar] [CrossRef]
- Jung, C.-H.; Choi, J.; Kim, W.-S.; Hong, S.-H. A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. J. Mater. Chem. A 2018, 6, 8013–8020. [Google Scholar] [CrossRef]
- Liu, H.; Zou, Y.; Huang, L.; Yin, H.; Xi, C.; Chen, X.; Shentu, H.; Li, C.; Zhang, J.; Lv, C.; et al. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries. Appl. Surf. Sci. 2018, 442, 204–212. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.D.; Wang, H.T.; Liu, W.; Lee, H.-W.; Yan, K.; Zhuo, D.; Lin, N.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372–8375. [Google Scholar] [CrossRef]
- Choi, S.; Kim, M.-C.; Moon, S.-H.; Lee, J.-E.; Shin, Y.-K.; Kim, E.-S.; Park, K.-W. 3D yolk–shell Si@void@CNF nanostructured electrodes with improved electrochemical performance for lithium-ion batteries. J. Ind. Eng. Chem. 2018, 64, 344–351. [Google Scholar] [CrossRef]
- Han, X.Y.; Zhao, D.L.; Meng, W.J.; Yang, H.X.; Zhao, M.; Duan, Y.J.; Tian, X.M. Graphene caging silicon nanoparticles anchored on graphene sheets for high performance Li-ion batteries. Appl. Surf. Sci. 2019, 484, 11–20. [Google Scholar] [CrossRef]
- Wang, M.-S.; Wang, Z.-Q.; Jia, R.; Yang, Y.; Zhu, F.-Y.; Yang, Z.-L.; Huang, Y.; Li, X.; Xu, W. Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery. Appl. Surf. Sci. 2018, 456, 379–389. [Google Scholar] [CrossRef]
- Nzabahimana, J.; Guo, S.T.; Hu, X.L. Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries. Appl. Surf. Sci. 2019, 479, 287–295. [Google Scholar] [CrossRef]
- Nie, P.; Le, Z.Y.; Chen, G.; Liu, D.; Liu, X.Y.; Wu, H.B.; Xu, P.C.; Li, X.R.; Liu, F.; Chang, L.M.; et al. Graphene caging silicon particles for high-performance lithium-ion batteries. Small 2018, 14, 1800635–1800642. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, W.J.; Yu, H.; Feng, T.; Pu, Y.; Liu, H.D.; Xiao, W.; Tian, L.L. Self-templated synthesis of nickel silicate hydroxide/reduced graphene oxide composite hollow microspheres as highly stable supercapacitor electrode material. Nanoscale Res. Lett. 2017, 12, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.X.; Zhang, G.Q.; Zhang, Z.Y.; Fang, C.H.; Ma, H.; Luo, W.; Liu, Z.Y. Enhanced stability lithium-ion battery based on optimized graphene/Si nanocomposites by templated assembly. ACS Omega 2019, 4, 18195–18202. [Google Scholar] [CrossRef] [PubMed]
- He, D.F.; Bai, F.J.; Li, L.X.; Shen, L.M.; Kung, H.H.; Bao, N.Z. Fabrication of sandwich—Structured Si nanoparticles-graphene nanocomposites for high-performance lithium-ion batteries. Electrochim. Acta 2015, 169, 409–415. [Google Scholar] [CrossRef] [Green Version]
- He, D.F.; Li, L.X.; Bai, F.J.; Zha, C.Y.; Shen, L.M.; Kung, H.H.; Bao, N.Z. Three-dimensional nanocomposites of graphene/carbon nanotube matrix-embedded Si nanoparticles for superior lithium ion batteries. Adv. Mater. Lett. 2017, 8, 206–211. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Y.Q.; Ru, Q.; Yan, H.L.; Chen, F.M.; Ling, F.C.-C. Scalable preparation of porous nano-silicon/TiN@carbon anode for lithium-ion batteries. Appl. Surf. Sci. 2019, 498, 143829–143837. [Google Scholar] [CrossRef]
- Sun, A.; Zhong, H.; Zhou, X.; Tang, J.; Jia, M.; Cheng, F.; Wang, Q.; Yang, J. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries. Appl. Surf. Sci. 2019, 470, 454–461. [Google Scholar] [CrossRef]
- Heubner, C.; Maletti, S.; Lohrberg, O.; Lein, T.; Liebmann, T.; Nickol, A.; Schneider, M.; Michaelis, A. Electrochemical characterization of battery materials in 2-electrode half-cell configuration: A balancing act between simplicity and pitfalls. Batter. Supercaps 2021, 4, 1–14. [Google Scholar]
- Han, P.; Sun, W.C.; Li, D.Z.; Luo, D.H.; Wang, Y.Z.; Yang, B.; Li, C.H.; Zhao, Y.P.; Chen, L.; Xu, J.; et al. Morphology-controlled synthesis of hollow Si/C composites based on KI-assisted magnesiothermic reduction for high performance Li-ion batteries. Appl. Surf. Sci. 2019, 481, 933–939. [Google Scholar] [CrossRef]
- Wang, T.H.; Ji, X.; Wu, F.Z.; Yang, W.L.; Dai, X.Y.; Xu, X.J.; Wang, J.; Guo, D.; Chen, M.L. Facile fabrication of a three-dimensional coral-like silicon nanostructure coated with a C/rGO double layer by using the magnesiothermic reduction of silica nanotubes for high-performance lithium-ion battery anodes. J. Alloys Compd. 2021, 863, 158569–158577. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Huang, Y.D.; Liu, N.T.; Wang, X.C.; Zhang, Y.; Guo, Y.; Wu, H.H.; Chen, H.X.; Tang, X.C.; Zhang, Q.B. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 2021, 54, 727–735. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Yang, Y.; Zhang, X.; Shen, L.; Bao, N. 3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery. Materials 2021, 14, 2836. https://doi.org/10.3390/ma14112836
Shao J, Yang Y, Zhang X, Shen L, Bao N. 3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery. Materials. 2021; 14(11):2836. https://doi.org/10.3390/ma14112836
Chicago/Turabian StyleShao, Jin, Yi Yang, Xiaoyan Zhang, Liming Shen, and Ningzhong Bao. 2021. "3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery" Materials 14, no. 11: 2836. https://doi.org/10.3390/ma14112836
APA StyleShao, J., Yang, Y., Zhang, X., Shen, L., & Bao, N. (2021). 3D Yolk–Shell Structured Si/void/rGO Free-Standing Electrode for Lithium-Ion Battery. Materials, 14(11), 2836. https://doi.org/10.3390/ma14112836