Tension-Tension Fatigue Behavior of High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. S-N Curve
3.2. Fracture Morphology
3.3. Morphology of Shear Bands
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wondraczek, L.; Mauro, J.C.; Eckert, J.; Kuehn, U.; Horbach, J.; Deubener, J.; Rouxel, T. Towards Ultrastrong Glasses. Adv. Mater. 2011, 23, 4578–4586. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.; Koshiba, H.; Kato, H.; Yavari, A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2003, 2, 661–663. [Google Scholar] [CrossRef]
- Zhang, Z.; Eckert, J.; Schultz, L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 2003, 51, 1167–1179. [Google Scholar] [CrossRef]
- Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–656. [Google Scholar] [CrossRef]
- He, Q.; Shang, J.K.; Ma, E.; Xu, J. Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness. Acta Mater. 2012, 60, 4940–4949. [Google Scholar] [CrossRef]
- Demetriou, M.D.; Launey, M.E.; Garrett, G.; Schramm, J.P.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ivanov, Y.P.; Zhou, W.H.; Li, Y.; Greer, A.L. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nat. Cell Biol. 2020, 578, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Masumoto, T.; Fukushima, K. Fatigue fracture of amorphous Pd-20 at.%Si alloy. Scr. Met. 1975, 9, 109–113. [Google Scholar] [CrossRef]
- Davis, L.A. Fatigue of metallic glasses. J. Mater. Sci. 1976, 11, 711–717. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Ritchie, R.O.; Johnson, W.L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 1997, 71, 476–478. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, C.; Lippmann, J.; Ritchie, R. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scr. Mater. 1998, 38, 537–542. [Google Scholar] [CrossRef]
- Wang, G.; Liaw, P.; Yokoyama, Y.; Peker, A.; Peter, W.; Yang, B.; Freels, M.; Zhang, Z.; Keppens, V.; Hermann, R.; et al. Studying fatigue behavior and Poisson’s ratio of bulk-metallic glasses. Intermetallics 2007, 15, 663–667. [Google Scholar] [CrossRef]
- Song, Z.-Q.; He, Q.; Ma, E.; Xu, J. Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass. Acta Mater. 2015, 99, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Ellyin, F. Fatigue Damage, Crack Growth and Life Prediction; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Yang, N.; Yi, J.; Yang, Y.H.; Huang, B.; Jia, Y.D.; Kou, S.Z.; Wang, G. Temperature Effect on Fracture of a Zr-Based Bulk Metallic Glass. Materials 2020, 13, 2391. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Donovan, P. A yield criterion for Pd40Ni40P20 metallic glass. Acta Met. 1989, 37, 445–456. [Google Scholar] [CrossRef]
- Wang, G.; Liaw, P.K.; Jin, X.; Yokoyama, Y.; Huang, E.-W.; Jiang, F.; Keer, L.M.; Inoue, A. Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. J. Appl. Phys. 2010, 108, 113512. [Google Scholar] [CrossRef]
- Zainulabdeen, A.A. Study of Fatigue Fractography of Mild Steel Used in Automotive Industry. Al-Khwarizmi Eng. J. 2019, 15, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Hosford, W.F. Mechanical Behavior of Materials; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Knott, J.F. Fundamentals of Fracture Mechanics; Butterworths: London, UK, 1973. [Google Scholar]
- Wu, F.; Zhang, Z.; Mao, S. Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 2009, 57, 257–266. [Google Scholar] [CrossRef]
- Wang, X.; Ren, X.; Qu, R.; Zhang, Z. Compression-compression fatigue behavior of a Zr-based metallic glass with different free volume contents. J. Alloy. Compd. 2019, 810, 151924. [Google Scholar] [CrossRef]
- He, Q.; Cheng, Y.-Q.; Ma, E.; Xu, J. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 2011, 59, 202–215. [Google Scholar] [CrossRef]
- Launey, M.; Busch, R.; Kruzic, J. Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Acta Mater. 2008, 56, 500–510. [Google Scholar] [CrossRef]
- Jia, H.; Wang, G.; Chen, S.; Gao, Y.; Li, W.; Liaw, P.K. Fatigue and fracture behavior of bulk metallic glasses and their composites. Prog. Mater. Sci. 2018, 98, 168–248. [Google Scholar] [CrossRef]
- Wagner, H.; Bedorf, D.; Küchemann, S.; Schwabe, M.; Zhang, B.; Arnold, W.; Samwer, K. Local elastic properties of a metallic glass. Nat. Mater. 2011, 10, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Wang, D.; Nakajima, K.; Zhang, W.; Hirata, A.; Nishi, T.; Inoue, A.; Chen, M.W. Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy. Phys. Rev. Lett. 2011, 106, 125504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Ge, T.; Liu, G.; Luan, J.; He, Q.; Yuan, Q.; Huang, W.; Zhang, K.; Bai, H.; Shek, C.; et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Mater. 2018, 155, 69–79. [Google Scholar] [CrossRef]
- Zhao, L.; Chan, K.; Chen, S.; Feng, S.; Han, D.; Wang, G. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures. Acta Mater. 2019, 169, 122–134. [Google Scholar] [CrossRef]
- Murali, P.; Guo, T.; Zhang, Y.-W.; Narasimhan, R.; Li, Y.; Gao, H.J. Atomic Scale Fluctuations Govern Brittle Fracture and Cavitation Behavior in Metallic Glasses. Phys. Rev. Lett. 2011, 107, 215501. [Google Scholar] [CrossRef]
- Chellali, M.R.; Nandam, S.H.; Hahn, H. Deformation-Induced Chemical Inhomogeneity and Short-Circuit Diffusion in Shear Bands of a Bulk Metallic Glass. Phys. Rev. Lett. 2020, 125, 205501. [Google Scholar] [CrossRef]
- Mu, X.; Chellali, M.R.; Boltynjuk, E.; Gunderov, D.; Valiev, R.Z.; Hahn, H.; Kübel, C.; Ivanisenko, Y.; Velasco, L. Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass. Adv. Mater. 2021, 33, 2007267. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Liaw, P.K.; Nishijima, M.; Hiraga, K.; Buchanan, R.A.; Inoue, A. Fatigue-Strength Enhancement of Cast Zr50Cu40Al10 Glassy Alloys. Mater. Trans. 2006, 47, 1286–1293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-H.; Yi, J.; Yang, N.; Liang, W.; Huang, H.-R.; Huang, B.; Jia, Y.-D.; Bian, X.-L.; Wang, G. Tension-Tension Fatigue Behavior of High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass. Materials 2021, 14, 2815. https://doi.org/10.3390/ma14112815
Yang Y-H, Yi J, Yang N, Liang W, Huang H-R, Huang B, Jia Y-D, Bian X-L, Wang G. Tension-Tension Fatigue Behavior of High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass. Materials. 2021; 14(11):2815. https://doi.org/10.3390/ma14112815
Chicago/Turabian StyleYang, Yu-Hang, Jun Yi, Na Yang, Wen Liang, Hao-Ran Huang, Bo Huang, Yan-Dong Jia, Xi-Lei Bian, and Gang Wang. 2021. "Tension-Tension Fatigue Behavior of High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass" Materials 14, no. 11: 2815. https://doi.org/10.3390/ma14112815
APA StyleYang, Y.-H., Yi, J., Yang, N., Liang, W., Huang, H.-R., Huang, B., Jia, Y.-D., Bian, X.-L., & Wang, G. (2021). Tension-Tension Fatigue Behavior of High-Toughness Zr61Ti2Cu25Al12 Bulk Metallic Glass. Materials, 14(11), 2815. https://doi.org/10.3390/ma14112815