A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening
Abstract
:1. Introduction
2. Examined Experimental Campaign
2.1. Material and Specimens
2.2. Testing Conditions
2.3. Experimental Results
3. Simulation of the Experimental Tests
3.1. The Reduced Strain Range Method
3.1.1. Theoretical Results
3.1.2. Criterion Drawbacks
3.2. The Refined Equivalent Deformation (RED) Criterion
3.2.1. Material Sensitivity to Loading Non-Proportionality
3.2.2. Determination of the Critical Plane
- (i)
- when the fracture is extremely ductile, that is , the angle tends to be 45°;
- (ii)
- when the fracture is extremely brittle, that is , the angle tends to be 0°;
- (iii)
- between the above fracture types, .
3.2.3. Damage Parameter under Proportional Loading
3.2.4. Damage Parameter under Non-Proportional Loading
3.2.5. Theoretical Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skibicki, D. Phenomena and Computational Models of Non-Proportional Fatigue of Materials; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Brown, M.W.; Miller, K.J. A theory for fatigue failure under multiaxial stress–strain conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Borodii, M.V. Analysis of experimental data on low-cycle fatigue in nonproportional deformation. Strength Mater. 2000, 32, 7–12. [Google Scholar] [CrossRef]
- Borodii, M.V.; Strizhalo, V.A. Analysis of the experimental data on a low cycle fatigue under nonproportional straining. Int. J. Fatigue 2000, 22, 275–282. [Google Scholar] [CrossRef]
- Borodii, M. Obtaining a Low-Cycle Fatigue Strain Criterion. Strength Mater. 2001, 33, 217–223. [Google Scholar] [CrossRef]
- Wu, Z.-R.; Hu, X.-T.; Song, Y.-D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. Int. J. Fatigue 2014, 59, 170–175. [Google Scholar] [CrossRef]
- Paul, S.K. Prediction of non-proportional cyclic hardening and multiaxial fatigue life for FCC and BCC metals under constant amplitude of strain cycling. Mater. Sci. Eng. A 2016, 656, 111–119. [Google Scholar] [CrossRef]
- Zhao, E.-N.; Qu, W.-L.; Zhou, Q. Multiaxial Fatigue Life Prediction of Metallic Materials Based on Critical Plane Damage Parameter. Huanan Ligong Daxue Xuebao J. South China Univ. Technol. Nat. Sci. 2017, 45, 130–136, 152. [Google Scholar]
- Qu, W.L.; Zhao, E.N.; Zhou, Q.; Pi, Y.-L. Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1064–1076. [Google Scholar] [CrossRef]
- Zhao, B.F.; Xie, L.Y.; Bai, X.; Ren, J.G.; Li, H.Y.; Zhang, S.J. A multi-axial low-cycle fatigue life prediction model considering effects of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1488–1503. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Li, B.; Lang, S. Multiaxial Fatigue Life Prediction of GH4169 Alloy Based on the Critical Plane Method. Metals 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Xie, L.; Song, J.; Zhao, Z.; Fan, F.; Xu, G. Prediction of multiaxial fatigue life for complex three-dimensional stress state considering effect of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2558–2578. [Google Scholar] [CrossRef]
- Bin, L.; Jianhui, L.; Xiuli, W. A new multiaxial fatigue life prediction model considering additional hardening effect. Adv. Mech. Eng. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Zhong, Z. Low-cycle fatigue life prediction for 316 l stainless steel using strain-based model. Jixie Qiangdu J. Mech. Strength 2020, 42, 313–318. [Google Scholar]
- Liu, J.; Lyu, X.; Wei, Y.; Cheng, J. Multiaxial Fatigue Life Prediction Considering Additional Hardening Effects and Mean Stains. Zhongguo Jixie Gongcheng China Mech. Eng. 2020, 31, 314–320. [Google Scholar]
- Liu, J.; Lv, X.; Wei, Y.; Pan, X.; Jin, Y.; Wang, Y. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter. Sci. Prog. 2020, 103, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Xie, L.; Wang, L.; Hu, Z.; Zhou, S.; Bai, X. A new multiaxial fatigue life prediction model for aircraft aluminum alloy. Int. J. Fatigue 2021, 143, 105993. [Google Scholar] [CrossRef]
- Vantadori, S.; Carpinteri, A.; Fortese, G.; Ronchei, C.; Scorza, D.; Zanichelli, A. Fatigue lifetime evaluation of notched components: Implementation of the control volume concept in a strain-based LCF criterion. Theor. Appl. Fract. Mech. 2018, 97, 400–408. [Google Scholar] [CrossRef]
- Gallo, P.; Berto, F.; Lazzarin, P. High temperature fatigue tests of notched specimens made of titanium Grade. Theor. Appl. Fract. Mech. 2015, 76, 27–34. [Google Scholar] [CrossRef]
- Shunmugavel, M.; Polishetty, A.; Littlefair, G. Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars. Procedia Technol. 2015, 20, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Gatto, M.; Groppo, R.; Bloise, N.; Fassina, L.; Visai, L.; Galati, M.; Iuliano, L.; Mengucci, P. Topological, Mechanical and Biological Properties of Ti6Al4V Scaffolds for Bone Tissue Regeneration Fabricated with Reused Powders via Electron Beam Melting. Materials 2021, 14, 224. [Google Scholar] [CrossRef]
- Hoppe, V.; Szymczyk-Ziółkowska, P.; Rusińska, M.; Dybała, B.; Poradowski, D.; Janeczek, M. Assessment of mechanical, chemical, and biological properties of Ti-Nb-Zr alloy for medical applications. Materials 2021, 14, 126. [Google Scholar]
- Piechowiak, D.; Miklaszewski, A.; Jurczyk, M. Low-Temperature Hydrothermal Treatment Surface Functionalization of the Ultrafine-Grained TiMo Alloys for Medical Applications. Materials 2020, 13, 5763. [Google Scholar] [CrossRef]
- Qi, H.-Y.; Zheng, X.-L.; Yang, X.-G. Low-cycle fatigue lifetime estimation of Ti–6Al–4V welded joints by a continuum damage mechanics model. Rare Met. 2015, 35, 299–302. [Google Scholar] [CrossRef]
- Eliaz, N.; Foucks, N.; Geva, D.; Oren, S.; Shriki, N.; Vaknin, D.; Fishman, D.; Levi, O. Comparative Quality Control of Titanium Alloy Ti–6Al–4V, 17–4 PH Stainless Steel, and Aluminum Alloy 4047 Either Manufactured or Repaired by Laser Engineered Net Shaping (LENS). Materials 2020, 13, 4171. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wu, Y.; Fang, Y.; Li, Y. High Temperature Mechanical Properties of a Vented Ti-6Al-4V Honeycomb Sandwich Panel. Materials 2020, 13, 3008. [Google Scholar] [CrossRef]
- Neikter, M.; Colliander, M.; Schwerz, C.D.A.; Hansson, T.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Materials 2020, 13, 1287. [Google Scholar] [CrossRef] [Green Version]
- Bong, H.J.; Kim, D.; Kwon, Y.-N.; Lee, J. Predicting hot deformation behaviors under multiaxial loading using the Gurson-Tvergaard-Needleman damage model for Ti–6Al–4V alloy sheets. Eur. J. Mech. A Solids 2021, 87, 104227. [Google Scholar] [CrossRef]
- Funch, C.V.; Palmas, A.; Somlo, K.; Valente, E.H.; Cheng, X.; Poulios, K.; Villa, M.; Somers, M.A.; Christiansen, T.L. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures. J. Mater. Sci. Technol. 2021, 81, 67–76. [Google Scholar] [CrossRef]
- Geyer, M.; Vidal, V.; Pottier, T.; Boher, C.; Rézaï-Aria, F. Investigations on the material flow and the role of the resulting hooks on the mechanical behaviour of dissimilar friction stir welded Al2024-T3 to Ti-6Al-4V overlap joints. J. Mater. Process. Technol. 2021, 292, 117057. [Google Scholar] [CrossRef]
- Lucon, E.; Benzing, J.; Hrabe, N. Effect of Precrack Configuration and Lack-of-Fusion on the Elastic-Plastic Fracture Toughness of Additively Manufactured Ti-6Al-4V parts. Mater. Perform. Charact. 2020, 9, 701–713. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, X.; Yang, H.; Tan, H.; Chen, J.; Jian, Z.; Li, J.; Huang, W. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue. J. Mater. Sci. Technol. 2021, 83, 18–33. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Narasimhan, K.; Singh, R. Understanding the deformation and fracture mechanisms in backward flow-forming process of Ti-6Al-4V alloy via a shear modified continuous damage model. J. Mater. Process. Technol. 2021, 292, 117060. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Xu, K.; Xu, B. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles. J. Mater. Sci. Technol. 2021, 77, 223–236. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, X.; Du, J.; Chen, Q.; Wan, Y.; Xiang, Y.; Tang, Y.; Zhang, X.; Huang, Z. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy. J. Mater. Sci. Technol. 2021, 72, 132–143. [Google Scholar] [CrossRef]
- Baragetti, S. Notch corrosion fatigue behavior of Ti-6Al-4V. Materials 2014, 7, 4349–4366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Li, S.; Qi, H. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior. Mater. Sci. Eng. A 2014, 597, 225–231. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Luo, M.; Zhang, D. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials 2019, 12, 1937. [Google Scholar] [CrossRef] [Green Version]
- Rajan, S.; Wanjara, P.; Gholipour, J.; Kabir, A.S. Joining of Dissimilar Alloys Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Using Linear Friction Welding. Materials 2020, 13, 3664. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Itoh, T.; Shimizu, Y.; Nakamura, H.; Takanashi, M. Low cycle fatigue life of Ti–6Al–4V alloy under non-proportional loading. Int. J. Fatigue 2012, 44, 14–20. [Google Scholar] [CrossRef]
- Oskouei, R.H.; Fallahnezhad, K.; Kuppusami, S. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings. Materials 2016, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- De Castro, M.C.B.; Couto, A.A.; Almeida, G.F.C.; Massi, M.; De Lima, N.B.; Sobrinho, A.D.S.; Castagnet, M.; Xavier, G.L.; Oliveira, R.R. The Effect of Plasma Nitriding on the Fatigue Behavior of the Ti-6Al-4V Alloy. Materials 2019, 12, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASME Code Case N-47. Case of ASME Boiler and Pressure Vessel Code, Case N-47, Class 1, Section 3, Division 1; ASME: Washington, DC, USA, 1978.
- Araújo, J.; Dantas, A.; Castro, F.; Mamiya, E.; Ferreira, J. On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. Int. J. Fatigue 2011, 33, 1092–1100. [Google Scholar] [CrossRef]
- Dowling, N.E. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Lin, J.; Li, W.; Yang, S.; Zhang, J. Vibration Fatigue Damage Accumulation of Ti–6Al–4V under Constant and Sequenced Variable Loading Conditions. Metals 2018, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, A.; Socie, D.F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Smith, R.N.; Watson, P.; Topper, T.H. A stress–strain parameter for the fatigue of metals. J. Mater. 1970, 5, 767–778. [Google Scholar]
Material | Al | V | Fe | C | N | H | O | Ti |
---|---|---|---|---|---|---|---|---|
TC4 | 6.4 | 4.1 | 0.2 | 0.01 | 0.01 | 0.002 | 0.16 | Balance |
TEST No. | (%) | (%) | (°) | (Cycles) | (°) | (-) | (%) | (Cycles) |
---|---|---|---|---|---|---|---|---|
T1 | 0.345 | 0.648 | 0 | 47,195 | 45 | 0 | 1.018 | 84,402 |
T2 | 0.427 | 0.710 | 0 | 20,611 | 45 | 0 | 1.184 | 43,305 |
T3 | 0.576 | 0.938 | 0 | 4141 | 45 | 0 | 1.581 | 12,059 |
T4 | 0.687 | 1.111 | 0 | 1795 | 45 | 0 | 1.880 | 5617 |
T5 | 0.863 | 1.371 | 0 | 868 | 45 | 0 | 2.342 | 2127 |
T6 | 1.391 | 2.038 | 0 | 351 | 45 | 0 | 3.644 | 302 |
T7 | 0.391 | 0.643 | 45 | 20,953 | 43.143 | 0.412 | 0.996 | 8434 |
T8 | 0.418 | 0.702 | 45 | 9478 | 43.744 | 0.414 | 1.076 | 5922 |
T9 | 0.496 | 0.831 | 45 | 4898 | 43.675 | 0.414 | 1.275 | 2800 |
T10 | 0.620 | 1.043 | 45 | 1563 | 43.792 | 0.414 | 1.597 | 1033 |
T11 | 0.772 | 1.255 | 45 | 683 | 42.813 | 0.411 | 1.957 | 431 |
T12 | 1.224 | 1.756 | 45 | 185 | 37.811 | 0.403 | 2.947 | 79 |
T13 | 0.349 | 0.639 | 90 | 45,138 | 90.000 | 0.946 | 0.738 | 5434 |
T14 | 0.418 | 0.704 | 90 | 37,273 | 0.000 | 0.972 | 0.836 | 10,102 |
T15 | 0.499 | 0.821 | 90 | 11,152 | 0.000 | 0.950 | 0.998 | 4859 |
T16 | 0.556 | 0.934 | 90 | 2332 | 0.000 | 0.970 | 1.112 | 2881 |
T17 | 0.632 | 1.079 | 90 | 1017 | 0.000 | 0.986 | 1.264 | 1579 |
T18 | 1.229 | 1.700 | 90 | 233 | 0.000 | 0.799 | 2.458 | 129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vantadori, S. A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening. Materials 2021, 14, 2542. https://doi.org/10.3390/ma14102542
Vantadori S. A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening. Materials. 2021; 14(10):2542. https://doi.org/10.3390/ma14102542
Chicago/Turabian StyleVantadori, Sabrina. 2021. "A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening" Materials 14, no. 10: 2542. https://doi.org/10.3390/ma14102542
APA StyleVantadori, S. (2021). A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening. Materials, 14(10), 2542. https://doi.org/10.3390/ma14102542