The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials
Abstract
1. Introduction
2. Sample Preparation and Measurement Procedures
3. Experimental Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khomskii, D. Trend: Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Scott, J. Multiferroic memories. Nat. Mater. 2007, 6, 256–257. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Li, J.; Levin, I.; Slutsker, J.; Provenzano, V.; Schenck, P.K.; Ramesh, R.; Ouyang, J.; Roytburd, A.L. Self-assembled multiferroic nanostructures in the Co Fe2O4-Pb TiO3 system. Appl. Phys. Lett. 2005, 87, 072909. [Google Scholar] [CrossRef]
- Corral-Flores, V.; Bueno-Baques, D.; Ziolo, R. Synthesis and characterization of novel CoFe2O4–BaTiO3 multiferroic core–shell-type nanostructures. Acta Mater. 2010, 58, 764–769. [Google Scholar] [CrossRef]
- Naveed-Ul-Haq, M.; Shvartsman, V.V.; Salamon, S.; Wende, H.; Trivedi, H.; Mumtaz, A.; Lupascu, D.C. A new (Ba, Ca)(Ti, Zr) O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 2016, 6, 32164. [Google Scholar] [CrossRef] [PubMed]
- Etier, M.; Schmitz-Antoniak, C.; Salamon, S.; Trivedi, H.; Gao, Y.; Nazrabi, A.; Landers, J.; Gautam, D.; Winterer, M.; Schmitz, D.; et al. Magnetoelectric coupling on multiferroic cobalt ferrite–barium titanate ceramic composites with different connectivity schemes. Acta Mater. 2015, 90, 1–9. [Google Scholar] [CrossRef]
- Samad, R.; Asokan, K.; Want, B. Magneto-dielectric studies on multiferroic composites of Pr doped CoFe2O4 and Yb doped PbZrTiO3. J. Alloy. Compd. 2018, 744, 453–462. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Magnetoelectric coupling and overall properties of multiferroic composites with 0-0 and 1-1 connectivity. J. Appl. Phys. 2015, 118, 174102. [Google Scholar] [CrossRef]
- Grigalaitis, R.; Petrović, M.V.; Bobić, J.; Dzunuzovic, A.; Sobiestianskas, R.; Brilingas, A.; Stojanović, B.; Banys, J. Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 2014, 40, 6165–6170. [Google Scholar] [CrossRef]
- Petrov, A.V.; Macutkevic, J.; Banys, J.; Kalanda, N.A.; Gurskii, L.I.; Solnyshkin, A.V.; Plyushch, A.O.; Kuzhir, P.P.; Sobolev, N.A. Synthesis and dielectric properties of ferroelectric-ferrimagnetic PZT-SFMO composites. Mod. Electron. Mater. 2017, 3, 26–31. [Google Scholar] [CrossRef]
- Mitoseriu, L.; Pallecchi, I.; Buscaglia, V.; Testino, A.; Ciomaga, C.; Stancu, A. Magnetic properties of the BaTiO3–(Ni, Zn) Fe2O4 multiferroic composites. J. Magn. Magn. Mater. 2007, 316, e603–e606. [Google Scholar] [CrossRef]
- Burange, N.; Chougule, S.; Patil, D.; Devan, R.; Kolekar, Y.; Chougule, B. Studies on structural, electrical and magnetic properties of y (Ni 0.5 Zn 0.3 Co 0.2 Fe2O4) + (1- y)(BaTiO3) composites. J. Alloy. Compd. 2009, 479, 569–573. [Google Scholar] [CrossRef]
- Plyushch, A.; Bychanok, D.; Kuzhir, P.; Maksimenko, S.; Lapko, K.; Sokol, A.; Macutkevic, J.; Banys, J.; Micciulla, F.; Cataldo, A.; et al. Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application. Phys. Status Solidi A 2014, 211, 2580–2585. [Google Scholar] [CrossRef]
- Apanasevich, N.; Sokal, A.; Lapko, K.; Kudlash, A.; Lomonosov, V.; Plyushch, A.; Kuzhir, P.; Macutkevic, J.; Banys, J.; Okotrub, A. Phosphate ceramics- carbon nanotubes composites: Liquid aluminum phosphate vs solid magnesium phosphate binder. Ceram. Int. 2015, 41, 12147–12152. [Google Scholar] [CrossRef]
- McNab, T.; Fox, R.; Boyle, A. Some magnetic properties of magnetite (Fe3O4) microcrystals. J. Appl. Phys. 1968, 39, 5703–5711. [Google Scholar] [CrossRef]
- Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng. 2012, 27, 632–637. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Sun, Q.; Chen, Q. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 2003, 38, 1113–1118. [Google Scholar] [CrossRef]
- Hsiang, H.I.; Lin, K.Y.; Yen, F.S.; Hwang, C.Y. Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites. J. Mater. Sci. 2001, 36, 3809–3815. [Google Scholar] [CrossRef]
- Yu, K.; Wang, H.; Zhou, Y.; Bai, Y.; Niu, Y. Enhanced dielectric properties of BaTiO3/poly (vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 2013, 113, 034105. [Google Scholar] [CrossRef]
- Huo, X.; Li, W.; Zhu, J.; Li, L.; Li, Y.; Luo, L.; Zhu, Y. Composite based on Fe3O4@ BaTiO3 particles and polyvinylidene fluoride with excellent dielectric properties and high energy density. J. Phys. Chem. C 2015, 119, 25786–25791. [Google Scholar] [CrossRef]
- Niranjan, M.K.; Velev, J.P.; Duan, C.G.; Jaswal, S.S.; Tsymbal, E.Y. Magnetoelectric effect at the Fe3O4/ BaTiO3 (001) interface: A first-principles study. Phys. Rev. B 2008, 78, 104405. [Google Scholar] [CrossRef]
- Sardarian, P.; Naffakh-Moosavy, H.; Afghahi, S.S.S. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@ MWCNT] nanocomposite system for modern electromagnetic absorption applications. J. Magn. Magn. Mater. 2017, 441, 257–263. [Google Scholar] [CrossRef]
- Bychanok, D.; Gorokhov, G.; Meisak, D.; Plyushch, A.; Kuzhir, P.; Sokal, A.; Lapko, K.; Sanchez-Sanchez, A.; Fierro, V.; Celzard, A.; et al. Exploring carbon nanotubes/BaTiO3/Fe3O4 nanocomposites as microwave absorbers. Prog. Electromagn. Res. C 2016, 66, 77–85. [Google Scholar] [CrossRef][Green Version]
- Liu, P.Z.; Zhang, L.; Wang, W.F.; Cheng, W.; Li, D.F.; Zhang, D.Y. Synthesis and Electromagnetic Shielding Properties of Graphene-Fe3O4-BaTiO3/Silicone Rubber Nanocomposites. In Materials Science Forum; Trans Tech Publications: Schwyz, Switzerland, 2019; Volume 950, pp. 97–102. [Google Scholar]
- Aliahmad, M.; Moghaddam, N.N. Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci. Pol. 2013, 31, 264–268. [Google Scholar] [CrossRef]
- Verwey, E.; Haayman, P. Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica 1941, 8, 979–987. [Google Scholar] [CrossRef]
- Mitra, A.; Mohapatra, J.; Meena, S.; Tomy, C.; Aslam, M. Verwey transition in ultrasmall-sized octahedral Fe3O4 nanoparticles. J. Phys. Chem. C 2014, 118, 19356–19362. [Google Scholar] [CrossRef]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 1989, 72, 1555–1558. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, P.; Wang, Y.; Ren, T. Size effect on the dielectric properties of BaTiO3. Ferroelectrics 1994, 160, 55–59. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef]
- Almond, D.; Duncan, G.; West, A. The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ion. 1983, 8, 159–164. [Google Scholar] [CrossRef]
- Wagh, A.S.; Grover, S.; Jeong, S.Y. Chemically bonded phosphate ceramics: II, warm-temperature process for alumina ceramics. J. Am. Ceram. Soc. 2003, 86, 1845–1849. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramics: I, a dissolution model of formation. J. Am. Ceram. Soc. 2003, 86, 1838–1844. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kurosawa, A.; Nagao, D.; Konno, M. Fabrication of barium titanate nanoparticles-polymethylmethacrylate composite films and their dielectric properties. Polym. Eng. Sci. 2009, 49, 1069–1075. [Google Scholar] [CrossRef]
- Choi, H.Y.; Jeong, Y.G. Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle. Compos. Part B Eng. 2019, 168, 58–65. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kurosawa, A.; Nagao, D.; Konno, M. Fabrication of barium titanate nanoparticles-epoxy resin composite films and their dielectric properties. Polym. Compos. 2010, 31, 1179–1183. [Google Scholar] [CrossRef]
- Grecu, M.N.; Constantinescu, S.; Tărăbăşanu-Mihăilă, D.; Ghica, D.; Bibicu, I. Spin dynamics in 57Fe-doped TiO2 anatase nanoparticles. Phys. Status Solidi B 2011, 248, 2927–2931. [Google Scholar] [CrossRef]
- Ghosh, S.; Khan, G.G.; Varma, S.; Mandal, K. Influence of film thickness and oxygen partial pressure on cation-defect-induced intrinsic ferromagnetic behavior in luminescent p-type Na-doped ZnO thin films. ACS Appl. Mater. Interfaces 2013, 5, 2455–2461. [Google Scholar] [CrossRef]
- Bele, A.; Cazacu, M.; Stiubianu, G.; Vlad, S. Silicone–barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Adv. 2014, 4, 58522–58529. [Google Scholar] [CrossRef]
- Busuioc, C.; Voicu, G.; Jinga, S.I.; Mitran, V.; Cimpean, A. The influence of barium titanate on the biological properties of collagen-hydroxiapatite composite scaffolds. Mater. Lett. 2019, 253, 317–322. [Google Scholar] [CrossRef]
- Salaoru, I.; Paul, S. Electrical bistability in a composite of polymer and barium titanate nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 4227–4234. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.M.; Kang, J.H.; Yang, S.Y.; Won, J.C.; Kim, Y.S. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem. Mater. 2010, 22, 450–456. [Google Scholar] [CrossRef]
- Crespo, M.; Méndez, N.; Gonzalez, M.; Baselga, J.; Pozuelo, J. Synergistic effect of magnetite nanoparticles and carbon nanofibres in electromagnetic absorbing composites. Carbon 2014, 74, 63–72. [Google Scholar] [CrossRef]
- Horszczaruk, E. Properties of cement-based composites modified with magnetite nanoparticles: A review. Materials 2019, 12, 326. [Google Scholar] [CrossRef] [PubMed]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 2016, 5, 9. [Google Scholar] [CrossRef]
Reference | Main Filler, wt. % | Binder, wt. % | BaTiO, wt. % | FeO, wt. % |
---|---|---|---|---|
BTFO | 26.6 | 20 | 26.6 | 26.6 |
BT | 40 | 20 | 40 | – |
FO | 40 | 20 | – | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plyushch, A.; Macutkevič, J.; Sokal, A.; Lapko, K.; Kudlash, A.; Adamchuk, D.; Ksenevich, V.; Bychanok, D.; Selskis, A.; Kuzhir, P.; et al. The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials. Materials 2021, 14, 133. https://doi.org/10.3390/ma14010133
Plyushch A, Macutkevič J, Sokal A, Lapko K, Kudlash A, Adamchuk D, Ksenevich V, Bychanok D, Selskis A, Kuzhir P, et al. The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials. Materials. 2021; 14(1):133. https://doi.org/10.3390/ma14010133
Chicago/Turabian StylePlyushch, Artyom, Jan Macutkevič, Aliaksei Sokal, Konstantin Lapko, Alexander Kudlash, Dzmitry Adamchuk, Vitaly Ksenevich, Dzmitry Bychanok, Algirdas Selskis, Polina Kuzhir, and et al. 2021. "The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials" Materials 14, no. 1: 133. https://doi.org/10.3390/ma14010133
APA StylePlyushch, A., Macutkevič, J., Sokal, A., Lapko, K., Kudlash, A., Adamchuk, D., Ksenevich, V., Bychanok, D., Selskis, A., Kuzhir, P., & Banys, J. (2021). The Phosphate-Based Composite Materials Filled with Nano-Sized BaTiO3 and Fe3O4: Toward the Unfired Multiferroic Materials. Materials, 14(1), 133. https://doi.org/10.3390/ma14010133