Two-Step Sintering of Partially Stabilized Zirconia for Applications in Ceramic Crowns
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bergmann, C.P.; Stumpf, A. Ceramic Materials for Prosthetic and Restoration Use. In Dental Ceramics: Microstructure, Properties and Degradation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–22. [Google Scholar]
- Johansson, C.; Kmet, G.; Rivera, J.; Larsson, C.; Vult Von Steyern, P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol. Scand. 2014, 72, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-M.; Smales, R.J.; Yip, K.H.K.; Sung, W.-J. Translucency and biaxial flexural strength of four ceramic core materials. Dent. Mater. 2008, 24, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Al-Amleh, B.; Lyons, K.; Swain, M. Clinical trials in zirconia: A systematic review. J. Oral Rehab. 2010, 37, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Benetti, P.; Kelly, J.R.; Sanchez, M.; Della Bona, A. Influence of thermal gradients on stress state of veneered restorations. Dent. Mater. 2014, 30, 554–563. [Google Scholar] [CrossRef]
- Sen, N.; Sermet, I.B.; Cinar, S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J. Prosthet. Dent. 2018, 119, 308. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H.F. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef]
- Peelen, J.G.J.; Metselaar, R. Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J. Appl. Phys. 1974, 45, 216–220. [Google Scholar] [CrossRef]
- Apetz, R.; Bruggen, M.P.B. Transparent Alumina: A Light-Scattering Model. J. Am. Ceram. Soc. 2003, 86, 480–486. [Google Scholar] [CrossRef]
- Krell, A.; Klimke, J.; Hutzler, T. Transparent compact ceramics: Inherent physical issues. Opt. Mater. 2009, 31, 1144–1150. [Google Scholar] [CrossRef]
- Pecharromán, C.; Mata-Osoro, G.; Antonio Díaz, L.; Torrecillas, R.; Moya, J.S. On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres. Opt. Express 2009, 17, 6899–6912. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, I.; Tsukuma, K. Light scattering by residual pores in transparent zirconia ceramics. J. Ceram. Soc. Jpn. 2011, 119, 133–135. [Google Scholar] [CrossRef]
- Wang, S.F.; Zhang, J.; Luo, D.W.; Gu, F.; Tang, D.Y.; Dong, Z.L.; Tan, G.E.B.; Que, W.X.; Zhang, T.S.; Li, S.; et al. Transparent ceramics: Processing, materials and applications. Progress Solid State Chem. 2013, 41, 20–54. [Google Scholar] [CrossRef]
- Penilla, E.H.; Hardin, C.L.; Kodera, Y.; Basun, S.A.; Evans, D.R.; Garay, J.E. The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: Modeling and experiments on ruby (Cr:Al2O3). J. Appl. Phys. 2016, 119, 023106. [Google Scholar] [CrossRef]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Srdić, V.V.; Winterer, M.; Hahn, H. Sintering Behavior of Nanocrystalline Zirconia Prepared by Chemical Vapor Synthesis. J. Am. Ceram. Soc. 2000, 83, 729–736. [Google Scholar] [CrossRef]
- Ross, I.M.; Rainforth, W.M.; McComb, D.W.; Scott, A.J.; Brydson, R. The role of trace additions of alumina to yttria-tetragonal zirconia polycrystals (Y–TZP). Scripta Mater. 2001, 45, 653–660. [Google Scholar] [CrossRef]
- Tsubakino, H.; Nozato, R.; Hamamoto, M. Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia-3 mol% Yttria. J. Am. Ceram. Soc. 1991, 74, 440–443. [Google Scholar] [CrossRef]
- Samodurova, A.; Kocjan, A.; Swain, M.V.; Kosmač, T. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomater. 2015, 11, 477–487. [Google Scholar] [CrossRef]
- Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater. 2015, 16, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Z.; Kim, B.-N.; Morita, K.; Yoshida, H.; Hiraga, K.; Sakka, Y. Effect of Alumina Dopant on Transparency of Tetragonal Zirconia. J. Nanomater. 2012, 2012, 5. [Google Scholar] [CrossRef]
- Dash, A.; Kim, B.-N.; Klimke, J.; Vleugels, J. Transparent tetragonal-cubic zirconia composite ceramics densified by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 2019, 39, 1428–1435. [Google Scholar] [CrossRef]
- Nassary Zadeh, P.; Lümkemann, N.; Sener, B.; Eichberger, M.; Stawarczyk, B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J. Prosthet. Dent. 2018, 120, 948–954. [Google Scholar] [CrossRef]
- Chevalier, J.; Deville, S.; Münch, E.; Jullian, R.; Lair, F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004, 25, 5539–5545. [Google Scholar] [CrossRef]
- Matsui, K.; Horikoshi, H.; Ohmichi, N.; Ohgai, M.; Yoshida, H.; Ikuhara, Y. Cubic-Formation and Grain-Growth Mechanisms in Tetragonal Zirconia Polycrystal. J. Am. Ceram. Soc. 2003, 86, 1401–1408. [Google Scholar] [CrossRef]
- Abd El-Ghany, O.S.; Sherief, A.H. Zirconia based ceramics, some clinical and biological aspects: Review. Future Dent. J. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Zhao, J.; Ikuhara, Y.; Sakuma, T. Grain Growth of Silica-Added Zirconia Annealed in the Cubic/Tetragonal Two-Phase Region. J. Am. Ceram. Soc. 1998, 81, 2087–2092. [Google Scholar] [CrossRef]
- Lóh, N.J.; Simão, L.; Faller, C.A.; De Noni, A.; Montedo, O.R.K. A review of two-step sintering for ceramics. Ceram. Int. 2016, 42, 12556–12572. [Google Scholar] [CrossRef]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. Review: Microstructure-development mechanism during sintering in polycrystalline zirconia. Int. Mater. Rev. 2018, 63, 375–406. [Google Scholar] [CrossRef]
- Kim, M.-S.; Go, S.-I.; Kim, J.-M.; Park, Y.-J.; Kim, H.-N.; Ko, J.-W.; Jung, S.-H.; Kim, J.-Y.; Yun, J.-D. Sinterability of Low-Cost 3Y-ZrO2 Powder and Mechanical Properties of the Sintered Body. J. Korean Ceram. Soc. 2017, 54, 285–291. [Google Scholar] [CrossRef][Green Version]
- Han, Y.; Li, S.; Zhu, T.; Xie, Z. An oscillatory pressure sintering of zirconia powder: Rapid densification with limited grain growth. J. Am. Ceram. Soc. 2017, 100, 2774–2780. [Google Scholar] [CrossRef]
- Wang, C.; Mao, X.; Peng, Y.-P.; Jiang, B.; Fan, J.; Xu, Y.; Zhang, L.; Zhao, J. Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics. Materials 2017, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, X.; Chen, S.; Zhu, Q.; Feng, M.; Zhang, P.; Fan, J.; Jiang, B.; Mao, X.; Zhang, L. Fabrication of infrared-transparent 3Y-TZP ceramics with small grain size by pre-sintering in an oxygen atmosphere and hot isostatic pressing. Ceram. Int. 2018, 44, 2093–2097. [Google Scholar] [CrossRef]
- Anselmi-Tamburini, U.; Woolman, J.N.; Munir, Z.A. Transparent Nanometric Cubic and Tetragonal Zirconia Obtained by High-Pressure Pulsed Electric Current Sintering. Adv. Funct. Mater. 2007, 17, 3267–3273. [Google Scholar] [CrossRef]
- Casolco, S.R.; Xu, J.; Garay, J.E. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scripta Mater. 2008, 58, 516–519. [Google Scholar] [CrossRef]
- Zhang, H.B.; Kim, B.N.; Morita, K.; Yoshida, H.; Lim, J.H.; Hiraga, K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J. Alloys Compd. 2010, 508, 196–199. [Google Scholar] [CrossRef]
- Zhang, H.; Kim, B.-N.; Morita, K.; Yoshida, H.; Lim, J.-H.; Hiraga, K. Optical Properties and Microstructure of Nanocrystalline Cubic Zirconia Prepared by High-Pressure Spark Plasma Sintering. J. Am. Ceram. Soc. 2011, 94, 2981–2986. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Kim, B.-N.; Morita, K.; Yoshida, H.; Hiraga, K.; Sakka, Y. Highly Infrared Transparent Nanometric Tetragonal Zirconia Prepared by High-Pressure Spark Plasma Sintering. J. Am. Ceram. Soc. 2011, 94, 2739–2741. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Reusser, E.; Louvel, M.; Hämmerle, C.H.F. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 2012, 32, 4091–4104. [Google Scholar] [CrossRef]
- Chu, M.-Y.; De Jonghe, L.C.; Lin, M.K.F.; Lin, F.J.T. Precoarsening to Improve Microstructure and Sintering of Powder Compacts. J. Am. Ceram. Soc. 1991, 74, 2902–2911. [Google Scholar] [CrossRef]
- Chen, I.W.; Wang, X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000, 404, 168. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-I.; Kim, Y.-W.; Mitomo, M.; Kim, D.-Y. Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two-Step Sintering. J. Am. Ceram. Soc. 2003, 86, 1803–1805. [Google Scholar] [CrossRef]
- Wang, X.-H.; Deng, X.-Y.; Bai, H.-L.; Zhou, H.; Qu, W.-G.; Li, L.-T.; Chen, I.-W. Two-Step Sintering of Ceramics with Constant Grain-Size, II: BaTiO3 and Ni-Cu-Zn Ferrite. J. Am. Ceram. Soc. 2006, 89, 438–443. [Google Scholar] [CrossRef]
- Bodišová, K.; Šajgalík, P.; Galusek, D.; Švančárek, P. Two-Stage Sintering of Alumina with Submicrometer Grain Size. J. Am. Ceram. Soc. 2007, 90, 330–332. [Google Scholar] [CrossRef]
- Mazaheri, M.; Valefi, M.; Hesabi, Z.R.; Sadrnezhaad, S.K. Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceram. Int. 2009, 35, 13–20. [Google Scholar] [CrossRef]
- Grosso, R.L.; Muccillo, E.N.S. Sintering, phase composition and ionic conductivity of zirconia–scandia–ceria. J. Power Sour. 2013, 233, 6–13. [Google Scholar] [CrossRef]
- Nadernezhad, A.; Moztarzadeh, F.; Hafezi, M.; Barzegar-Bafrooei, H. Two step sintering of a novel calcium magnesium silicate bioceramic: Sintering parameters and mechanical characterization. J. Eur. Ceram. Soc. 2014, 34, 4001–4009. [Google Scholar] [CrossRef]
- Hotza, D.; García, D.E.; Castro, R.H.R. Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering. Int. Mater. Rev. 2015, 60, 353–375. [Google Scholar] [CrossRef]
- Ojaimi, C.L.; Ferreira, J.A.; dos Santos, F.A.; Chinelatto, A.L.; Pallone, E.M.; Chinelatto, A.S.A. Mechanical characterisation and hydrothermal degradation of Al2O3-15 vol% ZrO2 nanocomposites consolidated by two-step sintering. Ceram. Int. 2018, 44, 16128–16136. [Google Scholar] [CrossRef]
- Mazaheri, M.; Simchi, A.; Golestani-Fard, F. Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering. J. Eur. Ceram. Soc. 2008, 28, 2933–2939. [Google Scholar] [CrossRef]
- Rez, G.; Sakka, Y.; Suzuki, T.S.; Uchikoshi, T.; Aglietti, E.F. Effect of bead-milling treatment on the dispersion of tetragonal zirconia nanopowder and improvements of two-step sintering. J. Ceram. Soc. Jpn. 2009, 117, 470–474. [Google Scholar] [CrossRef][Green Version]
- Paul, A.; Vaidhyanathan, B.; Binner, J.G.P. Hydrothermal Aging Behavior of Nanocrystalline Y-TZP Ceramics. J. Am. Ceram. Soc. 2011, 94, 2146–2152. [Google Scholar] [CrossRef]
- Sutharsini, U.; Thanihaichelvan, M.; Ting, C.H.; Ramesh, S.; Tan, C.Y.; Chandran, H.; Sarhan, A.A.D.; Ramesh, S.; Urriés, I. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceram. Int. 2017, 43, 7594–7599. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Jia, G.; Guo, W.; Song, X.; An, S. The effect of microstructure control on mechanical properties of 12Ce-TZP via two-step sintering method. J. Alloys Compd. 2017, 711, 686–692. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 6872:1995 Dental Ceramic; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- German, R.M. Solid-State Sintering Fundamentals. In Sintering Theory and Practice; Wiley: New York, NY, USA, 1996; pp. 67–141. [Google Scholar]
- Ohmichi, N.; Kamioka, K.; Ueda, K.; Matsui, K.; Ohgai, M. Phase Transformation of Zirconia Ceramics by Annealing in Hot Water. J. Ceram. Soc. Jpn. 1999, 107, 128–133. [Google Scholar] [CrossRef]
- Chen, P.-L.; Chen, I.-W. Sintering of Fine Oxide Powders: I, Microstructural Evolution. J. Am. Ceram. Soc. 1996, 79, 3129–3141. [Google Scholar] [CrossRef]
- Kang, S.J.L. Normal Grain Growth and Second-Phase Particles. In Sintering: Densification, Grain Growth & Microstructure; Elsevier Butterworth Heinemann: Oxford, UK, 2005; pp. 91–96. [Google Scholar]
- Chiang, Y.M.; Birnie, D.; Kingery, W.D. Microstructure. In Physical Ceramics: Principles for Ceramic Science and Engineering; Chapter 5; John Wiley & Sons: New York, NY, USA, 1997; pp. 351–513. [Google Scholar]
- Pouchly, V.; Maca, K.; Shen, Z. Two-stage master sintering curve applied to two-step sintering of oxide ceramics. J. Eur. Ceram. Soc. 2013, 33, 2275–2283. [Google Scholar] [CrossRef]
- Mazaheri, M.; Zahedi, A.M.; Sadrnezhaad, S.K. Two-Step Sintering of Nanocrystalline ZnO Compacts: Effect of Temperature on Densification and Grain Growth. J. Am. Ceram. Soc. 2008, 91, 56–63. [Google Scholar] [CrossRef]
- Czubayko, U.; Sursaeva, V.G.; Gottstein, G.; Shvindlerman, L.S. Influence of triple junctions on grain boundary motion. Acta Mater. 1998, 46, 5863–5871. [Google Scholar] [CrossRef]
- Gottstein, G.; King, A.H.; Shvindlerman, L.S. The effect of triple-junction drag on grain growth. Acta Mater. 2000, 48, 397–403. [Google Scholar] [CrossRef]
- Mattissen, D.; Molodov, D.A.; Shvindlerman, L.S.; Gottstein, G. Drag effect of triple junctions on grain boundary and grain growth kinetics in aluminium. Acta Mater. 2005, 53, 2049–2057. [Google Scholar] [CrossRef]
- Bernard-Granger, G.; Guizard, C. Apparent Activation Energy for the Densification of a Commercially Available Granulated Zirconia Powder. J. Am. Ceram. Soc. 2007, 90, 1246–1250. [Google Scholar] [CrossRef]
- Shao, W.Q.; Chen, S.O.; Li, D.; Cao, H.S.; Zhang, Y.C.; Zhang, S.S. Apparent activation energy for densification of α-Al2O3 powder at constant heating-rate sintering. Bull. Mater. Sci. 2009, 31, 903. [Google Scholar] [CrossRef]
- Song, X.; Lu, J.; Zhang, T.; Ma, J. Two-Stage Master Sintering Curve Approach to Sintering Kinetics of Undoped and Al2O3-Doped 8 Mol% Yttria-Stabilized Cubic Zirconia. J. Am. Ceram. Soc. 2011, 94, 1053–1059. [Google Scholar] [CrossRef]
- Gupta, T.K.; Bechtold, J.H.; Kuznicki, R.C.; Cadoff, L.H.; Rossing, B.R. Stabilization of tetragonal phase in polycrystalline zirconia. J. Mater. Sci. 1977, 12, 2421–2426. [Google Scholar] [CrossRef]
- Gupta, T.K.; Lange, F.F.; Bechtold, J.H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. J. Mater. Sci. 1978, 13, 1464–1470. [Google Scholar] [CrossRef]
- Sakthiabirami, K.; Vu, V.T.; Kim, J.W.; Kang, J.H.; Jang, K.J.; Oh, G.J.; Fisher, J.G.; Yun, K.D.; Lim, H.P.; Park, S.W. Tailoring interfacial interaction through glass fusion in glass/zinc-hydroxyapatite composite coatings on glass-infiltrated zirconia. Ceram. Int. 2018, 44, 16181–16190. [Google Scholar] [CrossRef]
- Aboras, M.; Muchtar, A.; Azhari, C.H.; Yahaya, N.; Mah, J.C.W. Enhancement of the microstructural and mechanical properties of dental zirconia through combined optimized colloidal processing and cold isostatic pressing. Ceram. Int. 2019, 45, 1831–1836. [Google Scholar] [CrossRef]
- Zimmermann, A.; Hoffman, M.; Flinn, B.D.; Bordia, R.K.; Chuang, T.J.; Fuller, E.R.; Rödel, J. Fracture of Alumina with Controlled Pores. J. Am. Ceram. Soc. 1998, 81, 2449–2457. [Google Scholar] [CrossRef]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef] [PubMed]
- Yashima, M.; Kakihana, M.; Yoshimura, M. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics 1996, 86, 1131–1149. [Google Scholar] [CrossRef]
- Stubican, V.S.; Hellmann, J.R.; Ray, S.P. Defects and Ordering in Zirconia Crystalline Solutions. Mater. Sci. Monogr. 1982, 10, 257–261. [Google Scholar]
- Pascual, C.; Durán, P. Subsolidus Phase Equilibria and Ordering in the System ZrO2-Y2O3. J. Am. Ceram. Soc. 1983, 66, 23–27. [Google Scholar] [CrossRef]
- Lawson, S. Environmental degradation of zirconia Ceramics. J. Eur. Ceram. Soc. 1995, 15, 485–502. [Google Scholar] [CrossRef]
- Klimke, J.; Trunec, M.; Krell, A. Transparent Tetragonal Yttria-Stabilized Zirconia Ceramics: Influence of Scattering Caused by Birefringence. J. Am. Ceram. Soc. 2011, 94, 1850–1858. [Google Scholar] [CrossRef]
Schedule | Temperature 1 T1 (°C) | Holding Time 1 t1 (min) | Temperature 2 T2 (°C) | Holding Time 2 t2 (h) |
---|---|---|---|---|
1 | 1300 | 5 | 1200 | 5–20 |
1250 | 5–20 | |||
1275 | 5–20 | |||
2 | 1375 | 5 | 1325 | 5–20 |
3 | 1400 | 5 | 1350 | 5–20 |
Sample | Temperature (°C) | Dwell Time (h) | Hardness (GPa) | Flexural Strength (MPa) |
---|---|---|---|---|
CS | 1450 | 2 | 13.98 ± 0.54 a | 381.30 ± 54.66 d |
TSS-5 | T1-1400; T2-1350 | 5 | 13.26 ± 0.47 c | 346.38 ± 41.94 d |
TSS-10 | T1-1400; T2-1350 | 10 | 13.84 ± 0.48 abc | 345.12 ± 22.70 d |
TSS-15 | T1-1400; T2-1350 | 15 | 13.59 ± 0.89 ab | 357.04 ± 49.00 d |
TSS-20 | T1-1400; T2-1350 | 20 | 13.43 ± 0.57 c | 402.12 ± 45.36 d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmawan, B.A.; Fisher, J.G.; Trung, D.T.; Sakthiabirami, K.; Park, S.-W. Two-Step Sintering of Partially Stabilized Zirconia for Applications in Ceramic Crowns. Materials 2020, 13, 1857. https://doi.org/10.3390/ma13081857
Darmawan BA, Fisher JG, Trung DT, Sakthiabirami K, Park S-W. Two-Step Sintering of Partially Stabilized Zirconia for Applications in Ceramic Crowns. Materials. 2020; 13(8):1857. https://doi.org/10.3390/ma13081857
Chicago/Turabian StyleDarmawan, Bobby Aditya, John G. Fisher, Doan Thanh Trung, Kumaresan Sakthiabirami, and Sang-Won Park. 2020. "Two-Step Sintering of Partially Stabilized Zirconia for Applications in Ceramic Crowns" Materials 13, no. 8: 1857. https://doi.org/10.3390/ma13081857
APA StyleDarmawan, B. A., Fisher, J. G., Trung, D. T., Sakthiabirami, K., & Park, S.-W. (2020). Two-Step Sintering of Partially Stabilized Zirconia for Applications in Ceramic Crowns. Materials, 13(8), 1857. https://doi.org/10.3390/ma13081857