Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Monitoring the Corrosion Reaction in SBF
2.3. Surface Analyses
2.3.1. Experimental Parameters Specific to XPS Analyses before Immersion Testing
2.3.2. Experimental Parameters Specific to XPS Analyses after Immersion Testing
3. Results
3.1. Analysis of Samples before Corrosion Testing
3.1.1. Imaging
3.1.2. XPS of Samples before SBF Immersion
3.2. Evolution of the Corrosion Reaction with Time
3.3. Analysis of Samples after SBF Immersion
3.3.1. Imaging
3.3.2. XPS of Samples after SBF Immersion
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Müller, L.; Müller, F.A. Preparation of SBF with different HCO3− content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006, 2, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; El-Aziz, A.M.; Breitinger, H.J. Study of the degradation behavior and the biocompatibility of Mg–0.8Ca alloy for orthopedic implant applications. J. Magnes. Alloy 2019, 7, 249–257. [Google Scholar] [CrossRef]
- Chen, Y.J.; Wang, Q.D.; Lin, J.B.; Liu, M.P.; Hjelen, J.; Roven, H.J. Grain refinement of magnesium alloys processed by severe plastic deformation. Trans. Nonferr. Met. Soc. China 2014, 24, 3747–3754. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, D.; Zhang, X.; Xu, X. Effect of Sn addition on the microstructure and mechanical properties of Mg–6Zn–1Mn (wt. %) alloy. J. Alloy Compd. 2014, 585, 656–666. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Zhao, Y.; Chen, M. Corrosion degradation behavior of Mg–Ca alloy with high Ca content in SBF. Trans. Nonferr. Met. Soc. China 2015, 25, 3339–3347. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable Biomaterials Based on Magnesium Corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Yang, Q.; Chen, Y.; Yang, Y.; Zhang, Z. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Trans. Nonferr. Met. Soc. China 2014, 24, 570–581. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Yajid, M.A.M.; Kasiri-Asgarani, M.; Abdul-Kadir, M.R.; Medraj, M. In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite. Trans. Nonferr. Met. Soc. China 2014, 24, 2516–2528. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical coatings on magnesium alloys—A review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Han, X.; Bai, J.; Xue, F.; Chu, P. Surface modification of biomedical magnesium alloy wires by micro-arc oxidation. Trans. Nonferr. Met. Soc. China 2014, 24, 1058–1064. [Google Scholar] [CrossRef]
- Chen, B.; Wang, R.; Peng, C.; Feng, Y.; Wang, N. Influence of Al-Mn master alloys on microstructures and electrochemical properties of Mg-Al-Pb-Mn alloys. Trans. Nonferr. Met. Soc. China 2014, 24, 423–430. [Google Scholar] [CrossRef]
- Shadanbaz, S.; Dias, G.J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomater. 2012, 8, 20–30. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Kerstetter, J.E. Nutrition in Bone Health Revisited: A Story beyond Calcium. J. Am. Coll. Nutr. 2000, 19, 715–737. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30, 484–498. [Google Scholar] [CrossRef]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar]
- Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A multipurpose trace element. Arch. Toxicol. 2006, 80, 1. [Google Scholar] [CrossRef]
- Haenzi, A.C.; Sologubenko, A.S.; Gunde, P.; Schinhammer, M.; Uggowitzer, P.J. Design considerations for achieving simultaneously high-strength and highly ductile magnesium alloys. Philos. Mag. Lett. 2012, 92, 417–427. [Google Scholar] [CrossRef]
- Haenzi, A.C.; Dalla Torre, F.H.; Sologubenko, A.S.; Gunde, P.; Schmid-Fetzer, R.; Kuehlein, M.; Loeffler, J.F.; Uggowitzer, P.J. Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 2009, 89, 377–390. [Google Scholar] [CrossRef]
- Koike, J. Dislocation Plasticity and Complementary Deformation Mechanisms in Polycrystalline Mg Alloys. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2004; Volume 449–452, pp. 665–668. [Google Scholar]
- Fairley, N. CasaXPS VAMAS Processing Software. Available online: http://www.casaxps.com (accessed on 14 January 2019).
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST: X-ray Photoelectron Spectroscopy Database. Available online: http://srdata.nist.gov/xps/ (accessed on 14 January 2019).
- Chastain, J. (Ed.) Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics Inc.: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Mei, D.; Lamaka, S.V.; Gonzalez, J.; Feyerabend, F.; Willumeit-Römerb, R.; Zheludkevich, M.L. The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corros. Sci. 2019, 147, 81–93. [Google Scholar] [CrossRef]
- Kieke, M.; Feyerabend, F.; Lemaitre, J.; Behrens, P.; Willumeit-Römer, R. Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions. BioNanoMatererials 2016, 17, 131–143. [Google Scholar] [CrossRef]
- Gray-Munro, J.E.; Strong, M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J. Biomed. Mater. Res. Part A 2009, 90, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.; Hou, R.Q.; Nidadavolu, E.P.S.; Willumeit-Römer, R.; Feyerabend, F. Magnesium degradation under physiological conditions—Best practice. Bioact. Mater. 2018, 3, 174–185. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.L.; Cao, F.; Shi, Z.; Bowen, P. Advances in Mg corrosion and research suggestions. J. Magnes. Alloy 2013, 1, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.F.; Li, Y.; Lin, J.; Wen, C. Effects of zirconium and strontium on the biocorrosion of Mg-Zr-Sr alloys for biodegradable implant applications. J. Mater. Chem. B 2015, 3, 3714–3729. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Mueller, W.D.; Nascimento, M.L.; Lorenzo de Mele, M.F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 2010, 6, 1749–1755. [Google Scholar] [CrossRef]
- Orlov, D.; Reinwalt, B.; Tayeb-Bey, I.; Wadsö, L.; Horky, J.; Ojdanic, A.; Schafler, E.; Zehetbauer, M. Advanced Immersion Testing of Model Mg-Alloys for Biomedical Applications. In Magnesium Technology 2020; The Minerals, Metals & Materials Series; Jordon, J.B., Miller, V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 235–242. [Google Scholar]
- Kuhlmann, J.; Bartsch, I.; Willbold, E.; Schuchardt, S.; Holz, O.; Hort, N.; Höche, D.; Heineman, W.R.; Witte, F. Fast Escape of Hydrogen From Gas Cavities Around Corroding Magnesium Implants. Acta Biomater. 2013, 9, 8714–8721. [Google Scholar] [CrossRef] [Green Version]
- Horky, J.; Ghaffar, A.; Werbach, K.; Mingler, B.; Pogatscher, S.; Schäublin, R.; Setman, D.; Uggowitzer, P.J.; Löffler, J.F.; Zehetbauer, M.J. Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment. Materials 2019, 12, 2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojdanic, A. Optimization of Mechanical Properties of Biodegradable Low-Corrosion Mg-Alloys by Means of Severe Plastic Deformation and Thermal Treatment. Ph.D. Thesis, University of Vienna, Vienna, Austria, 2019. [Google Scholar]
- Ojdanic, A.; Horky, J.; Mingler, B.; Fanetti, M.; Gardonio, S.; Valant, M.; Sulkowski, B.; Schafler, E.; Orlov, D.; Zehetbauer, M.J. Effects of Severe Plastic Deformation and/or Thermal Treatment on Mechanical Properties of Biodegradable Mg-Alloys. Manuscript in preparation.
Nominal Composition | Mg-0.3Ca | Mg-5Zn | Mg-5Zn-0.3Ca | |||
---|---|---|---|---|---|---|
Naming Convention | X03 | Z5 | ZX50 | |||
Measured Composition | wt% | at% | wt% | at% | wt% | at% |
Ca | 0.3 | 0.2 | − | − | 0.3 | 0.2 |
Zn | − | − | 5.0 | 1.9 | 5.0 | 1.9 |
Mg | 99.7 | 99.8 | 95.0 | 98.1 | 94.7 | 97.9 |
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl− | HCO3− | HPO42− | SO42− |
---|---|---|---|---|---|---|---|---|
Concentration | 142.0 | 5.0 | 1.0 | 2.5 | 109.0 | 27.0 | 1.0 | 0.5 |
Sample | X03 | Z5 | ZX50 | |||
---|---|---|---|---|---|---|
XPS Peak | BE/eV | c/at% | BE/eV | c/at% | BE/eV | c/at% |
Ca 2s | 440.3 | 12.9 | − | − | 439.4 | 6.0 |
Mg 2s | 90.4 | 25.7 | 89.7 | 40.7 | 89.8 | 36.0 |
O 1s 1 | 532.4 | 53.1 | 531.9 | 52.6 | 532.0 | 48.4 |
O 1s 2 | 529.9 | 1.0 | 530.5 | 3.0 | 531.5 | 2.8 |
O 1s 3 | 533.5 | 6.4 | 533.6 | 5.9 | 533.5 | 6.8 |
Sample | X03 | Z5 | ZX50 |
---|---|---|---|
c(Na) | 0.4 | 0.7 | 1.5 |
c(Zn) | 0.0 | 1.0 | 0.5 |
c(O) | 59.1 | 56.6 | 58.9 |
c(Ca) | 14.5 | 8.9 | 8.9 |
c(C) | 2.0 | 3.1 | 2.8 |
c(P) | 15.2 | 11.0 | 13.2 |
c(Mg) | 9.2 | 19.0 | 14.3 |
Sample | X03 | Z5 | ZX50 | ||||||
---|---|---|---|---|---|---|---|---|---|
γ | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
p | 0.15 | 0.20 | 0.30 | 0.05 | 0.05 | 0.20 | 0.05 | 0.10 | 0.10 |
q | 0.30 | 0.35 | 0.70 | 0.15 | 0.15 | 0.05 | 0.25 | 0.35 | 0.55 |
r | 0.55 | 0.45 | 0.00 | 0.80 | 0.80 | 0.75 | 0.70 | 0.55 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner Petrovič, D.; Mandrino, D.; Šarler, B.; Horky, J.; Ojdanic, A.; J. Zehetbauer, M.; Orlov, D. Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. Materials 2020, 13, 1740. https://doi.org/10.3390/ma13071740
Steiner Petrovič D, Mandrino D, Šarler B, Horky J, Ojdanic A, J. Zehetbauer M, Orlov D. Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. Materials. 2020; 13(7):1740. https://doi.org/10.3390/ma13071740
Chicago/Turabian StyleSteiner Petrovič, Darja, Djordje Mandrino, Božidar Šarler, Jelena Horky, Andrea Ojdanic, Michael J. Zehetbauer, and Dmytro Orlov. 2020. "Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid" Materials 13, no. 7: 1740. https://doi.org/10.3390/ma13071740
APA StyleSteiner Petrovič, D., Mandrino, D., Šarler, B., Horky, J., Ojdanic, A., J. Zehetbauer, M., & Orlov, D. (2020). Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. Materials, 13(7), 1740. https://doi.org/10.3390/ma13071740