Effect of Temperature on the Composition of a Synthetic Hydrocarbon Aviation Lubricating Oil
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Sample Analysis
3. Results
3.1. Subsection FT-IR Analysis
3.2. APC Analysis
3.3. GC/MS Analysis
4. Discussion
4.1. Physicochemical Properties: Changes with Temperature
4.2. Molecular Structure: Changes with Temperature
4.3. CA of the Oil Samples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagendramma, P.; Kaul, S. Development of ecofriendly/biodegradable lubricants: An overview. Renew. Sustain. Energy Rev. 2012, 16, 764–774. [Google Scholar] [CrossRef]
- Raof, N.A.; Yunus, R.; Rashid, U.; Azis, N.; Yaakub, Z. Effect of molecular structure on oxidative degradation of ester based transformer oil. Tribol. Int. 2019, 140, 105852. [Google Scholar] [CrossRef]
- Lansdown, A.R.; Lee, S. Aviation Lubricants. In Chemistry and Technology of Lubricants, 3rd ed.; Mortier, R.M., Fox, M.F., Orszulik, S.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 345–351. [Google Scholar]
- Matkovskiy, P.E.; Startseva, G.P.; Churkina, V.Y.; Knerel’Man, E.I.; Davydova, G.I.; Vasil’Eva, L.P.; Yarullin, R.S. Oligomerization of 1-decene under the action of catalytic systems based on Al-aluminum activator-RCl and Al-RCl. Polym. Sci. Ser. A 2008, 50, 1175–1186. [Google Scholar] [CrossRef]
- Nagendramma, P.; Kaul, S.; Bisht, R.P.S. Study of synthesised ecofriendly and biodegradable esters: fire resistance and lubricating properties. Lubr. Sci. 2010, 22, 103–110. [Google Scholar] [CrossRef]
- Kramer, D.C.; Ziemer, J.N.; Cheng, M.T.; Fry, C.E.; Reynolds, R.N.; Lok, B.K.; Sztenderowicz, M.L.; Krug, R.R. Influence of Group II & III Base Oil Composition on VI and Oxidation Stability. Paper Presented at the 1999 AIChE Spring National Meeting, Houston; Chevron Products Company: Richmond, CA, USA, 1999. [Google Scholar]
- Wu, N. Study on Structure-Activity Relationship of Thermal Oxidation Degradation of Poly α-Olefin Aviation Lubricating Oil. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2018. [Google Scholar]
- Ye, Z.H. Research on Dynamic Behavior of High-Speed Rolling Bearings in Aero-Engines. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2013. [Google Scholar]
- Jin, Y.; Duan, H.; Wei, L.; Cheng, B.; Chen, S.; Zhan, S.; Li, J. Comparison of the oxidation resistance of synthetic ester oils DOA and TDTM: Experimental evaluation and theoretical calculation. Lubr. Sci. 2019, 31, 252–261. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Zhang, C.; Dong, J.; Zhao, X.; Wang, L. Traction behaviours of aviation lubricating oil and the effects on the dynamic and thermal characteristics of high-speed ball bearings. Ind. Lubr. Tribol. 2019, 72, 15–23. [Google Scholar] [CrossRef]
- Offunne, G.; Maduako, A.; Ojinnaka, C. Studies on the ageing characteristics of automotive crankcase oils. Tribol. Int. 1989, 22, 401–404. [Google Scholar] [CrossRef]
- Zhang, X.; Murrenhoff, H.; Weckes, P.; Hölderich, W. Effect of temperature on the ageing behaviour of unsaturated ester-based lubricants. J. Synth. Lubr. 2004, 21, 1–11. [Google Scholar] [CrossRef]
- Qian, X.; Xiang, Y.; Shang, H.; Cheng, B.; Zhan, S.; Li, J. Thermal-oxidation mechanism of dioctyl adipate base oil. Friction 2016, 4, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Yang, H.W.; Fei, Y.W.; Guo, F.; Guo, L.; Bian, S. Performance-deterioration mechanism of lubricating based oil with metal catalysis. Petrkchem. Technol. 2017, 46, 1294–1303. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Zhang, M.; Wang, X. Oxidative degradation of synthetic ester and its influence on tribological behavior. Tribol. Int. 2013, 64, 16–23. [Google Scholar] [CrossRef]
- Vengudusamy, B.; Enekes, C.; Spallek, R. EHD friction properties of ISO VG 320 gear oils with smooth and rough surfaces. Friction 2019, 8, 164–181. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.S.; Yanovskii, L.S.; Ezhov, V.M.; Molokanov, A.; Sharanina, K.V. Effect of Lubricating-Oil Foamability on Oil-System Operation in Aviation Gas-Turbine Engines. Chem. Technol. Fuels Oils 2017, 53, 15–22. [Google Scholar] [CrossRef]
- Sheng, H.; Xinguo, C.; Shujie, M.; Tianhui, R. The mechanism of thermal oxidation of a hydrotreated naphthenic lube base oil at high temperature. Chem. Technol. Fuels Oils 2009, 45, 260–266. [Google Scholar] [CrossRef]
- Vijh, A.K. Electrochemically based approaches to the preservation of lubricating oils under high temperature friction conditions. Wear 1986, 107, 287–288. [Google Scholar] [CrossRef]
- Moustafa, N.E.; Eissa, E.A. Inverse gas chromatographic study of the oxidation stability of lubricating base oils via solubility parameter calculations. Chin. J. Chromatogr. 2007, 25, 871–875. [Google Scholar] [CrossRef]
- Jain, M.R.; Sawant, R.; Paulmer, R.; Ganguli, D.; Vasudev, G. Evaluation of thermo-oxidative characteristics of gear oils by different techniques: Effect of antioxidant chemistry. Thermochim. Acta 2005, 435, 172–175. [Google Scholar] [CrossRef]
- Egharevba, F.; Maduako, A.U.C. Assessment of Oxidation in Automotive Crankcase Lube Oil: Effects of Metal and Water Activity. Ind. Eng. Chem. Res. 2002, 41, 3473–3481. [Google Scholar] [CrossRef]
- Qiao, X.J.; Tian, H.X. Application of system clustering method and principle component analysis method in clustering analysis of lubricating oil. Lubr. Eng. 2013, 38, 99–103. [Google Scholar] [CrossRef]
- Uy, D.; Simko, S.J.; Carter, R.; Jensen, R.K.; Gangopadhyay, A.K. Characterization of anti-wear films formed from fresh and aged engine oils. Wear 2007, 263, 1165–1174. [Google Scholar] [CrossRef]
- Mascolo, G.; Rausa, R.; Bagnuolo, G.; Mininni, G.; Tinucci, L. Thermal degradation of synthetic lubricants under oxidative pyrolytic conditions. J. Anal. Appl. Pyrolysis 2006, 75, 167–173. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Vinu, R. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.A.; Saba, C.S. Gas Chromatographic Monitoring of Hydroxyl Components in Oxidized Turbine Engine Lubricants. Tribol. Trans. 2003, 46, 576–579. [Google Scholar] [CrossRef]
- Levermore, D.M.; Josowicz, M.; Rees, W.S.; Janata, J. Headspace analysis of engine oil by gas chromatography/mass spectrometry. Anal. Chem. 2001, 73, 1361–1365. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Dos Santos, I.M.G.; Souza, A.G.; Sobrinho, E.V.; Fernandes, V.J., Jr.; Silva, A.J.N. Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation. Fuel 2004, 83, 2393–2399. [Google Scholar] [CrossRef]
- Goyenola, C.; Stafström, S.; Schmidt, S.; Hultman, L.; Gueorguiev, G. Carbon Fluoride, CFx: Structural Diversity as Predicted by First Principles. J. Phys. Chem. C 2014, 118, 6514–6521. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, R.B.; Rivelino, R.; Mota, F.D.B.; Kakanakova-Georgieva, A.; Gueorguiev, G. Feasibility of novel (H3C)nX(SiH3)3−n compounds (X = B, Al, Ga, In): structure, stability, reactivity, and Raman characterization from ab initio calculations. Dalton Trans. 2015, 44, 3356–3366. [Google Scholar] [CrossRef] [Green Version]
- Petroleum Products - Determination of Color; GB/T6540-1986; Research Institute of Petroleum Processing: Beijing, China, 1987.
- Petroleum Products - Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity; GB/T 265/1988; Takahashi Petrochemical Company: Shanghai, China, 1989.
- Petroleum Products and Lubricants - Determination of Acid Number - Potentiometric Titration Method; GB/T7304-2000; Lanzhou Petrochemical Complex: Lanzhou, China, 2001.
- Petroleum Products - Determination of Pour Point; GB/T3535-2006; Research Institute of Petroleum Processing: Beijing, China, 2006.
- Qi, Y.P.; Li, T.L.; Guo, G.G. The production and application of α-olefin. Petrochem. Ind. Tech. 2008, 15, 53–56, 73. [Google Scholar] [CrossRef]
- Colyer, C.C.; Gergel, W.C. Chemistry and Technology of Lubricants. In Chemistry and Technology of Lubricants, 2nd ed.; Mortire, R.M., Orszulik, S.T., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 72–73. [Google Scholar]
- Zhao, L.; Liu, X.D. Study on the features of lubricants for alternative refrigerants and on the mechanism of additives. J. Xi’an Univ. Arch. Tech. 2002, 34, 252–255. [Google Scholar] [CrossRef]
- Okoye, I.P.; Khama, A.G.; Akaranta, O. The effect of natural antioxidants (from groundnut shell extracts) on the oxidation stability of lubricating oil. Glob. J. Pure App. Sci. 2010, 16, 423–427. [Google Scholar]
- Adhvaryu, A.; Perez, J.M.; Duda, L.J. Quantitative NMR Spectroscopy for the Prediction of Base Oil Properties. Tribol. Trans. 2000, 43, 245–250. [Google Scholar] [CrossRef]
- Xin, M.L.; Li, M.D.; Yang, B.; Zhang, S.K.; Huang, G.J. Antioxidant mechanism and development trend of antioxidants in polymers. Plast. Sci. Tech. 2017, 45, 100–106. [Google Scholar] [CrossRef]
- Yao, T.; Hao, J.T.; Guo, L.; Xiao, Y.P.; Jiang, H.Z.; Guo, Q.P.; Fei, Y.W. The relationship between structure and property about poly α–olefin aviation lubricaiting base oil at high temperature condition. Lubr. Eng. 2016, 41, 91–106. [Google Scholar] [CrossRef]
- Ghosh, P.; Hoque, M.; Karmakar, G.; Das, M.K. Dodecyl methacrylate and vinyl acetate copolymers as viscosity modifier and pour point depressant for lubricating oil. Int. J. Ind. Chem. 2017, 8, 197–205. [Google Scholar] [CrossRef]
- Neary, V.S.; Odgaard, A.J. Closure to “Three-Dimensional Flow Structure at Open-Channel Diversions” by Vincent S. Neary and A. Jacob Odgaard. J. Hydraul. Eng. 1995, 121, 88–90. [Google Scholar] [CrossRef]
- Siouris, S.; Wilson, C.W. Thermodynamic Properties of Pentaerythritol-Based Species Involved in Degradation of Aviation Gas Turbine Lubricants. Ind. Eng. Chem. Res. 2010, 49, 12294–12301. [Google Scholar] [CrossRef]
- Kreivaitis, R.; Padgurskas, J.; Gumbyte, M.; Makareviciene, V.; Spruogis, B. The influence of oxidation on tribological properties of rapeseed oil. Transport 2011, 26, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, P.; Wang, D.; Grant, C.S.; Oxenham, W.; Hauser, P.J. Effects of Antioxidants on the Thermal Degradation of a Polyol Ester Lubricant Using GPC. Ind. Eng. Chem. Res. 2006, 45, 15–22. [Google Scholar] [CrossRef]
- Khelfaoui, M.; Sedkaoui, S. Sharing Economy and Big Data Analytics, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 2020; pp. 195–214. [Google Scholar]
- Yang, S.; Berdine, G. Cluster analysis. Southwest Respir. Crit. Care Chronicles 2018, 6, 37–40. [Google Scholar] [CrossRef]
- Wakiru, J.; Pintelon, L.; Chemweno, P.; Muchiri, P. Analysis of lubrication oil contamination by fuel dilution with application of cluster analysis. In Proceedings of the XVII International Scientific Conference on Industrial Systems (IS’17), University of Novi Sad, Novi Sad, Serbia, 4–6 October 2017. [Google Scholar]
- Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P. A review on lubricant condition monitoring information analysis for maintenance decision support. Mech. Syst. Signal Process. 2019, 118, 108–132. [Google Scholar] [CrossRef]
- Ragno, G.; De Luca, M.; Ioele, G. An application of cluster analysis and multivariate classification methods to spring water monitoring data. Microchem. J. 2007, 87, 119–127. [Google Scholar] [CrossRef]
- Zięba-Palus, J.; Kościelniak, P.; Łącki, M. Differentiation of used motor oils on the basis of their IR spectra with application of cluster analysis. J. Mol. Struct. 2001, 596, 221–228. [Google Scholar] [CrossRef]
- Gong, Y.; Guan, L.; Feng, X.; Wang, L.; Yu, X. In-situ lubricating oil condition sensoring method based on two-channel and differential dielectric spectroscopy combined with supervised hierarchical clustering analysis. Chemom. Intell. Lab. Syst. 2016, 158, 155–164. [Google Scholar] [CrossRef]
Type | Group | Characteristic Frequency/cm−1 | Intensity∗ | Belonging |
---|---|---|---|---|
alkyl group | –CH3 | 2957 | vs | νas |
–CH2– | 2925 | vs | νas | |
–CH2– | 2854 | vs | νs | |
–CH2– | 1465 | vs | δ | |
–CH(CH3)2 | 1738 | s | δas | |
–(CH2)n– | 721 | m | δ | |
aldehyde group | C–H | 2730 | w | νCH |
C–H | 2672 | w | γ | |
ester | C=O | 1741 | vs | νC=O |
C–O–C in long-chain saturated fatty acids | 1169 and 1142 | m | νas(C–O–C) | |
benzene | framework vibrations | 1611 and 1588 | w | ν |
o- | 879 | m | γ=C–H | |
m- | 821 | m | ||
p- | 779 | m | ||
olefin | C=C | 1640 | vw | νC=C |
=CH–H | 970 | s | ωC=C | |
secondary amine | –NH | 1506 | w | νNH |
C-N in aromatic compounds | 1241 and 1314 | w | νC–N | |
phenol | –OH | 3645 | w | νOH |
O–H | 686 | w | τ |
Peak | Retention Time (min) | Compounds | Chemical Formula | Molecular Weight | Structural Formula | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Srt | S180 | S200 | S230 | S250 | S270 | S300 | ||||||
1 | 1.468 | 1-Butene | C4H8 | 56 | | - | - | - | - | - | - | 0.015 |
2 | 1.518 | Hexane | C6H14 | 86 | | - | - | - | - | - | - | 0.012 |
3 | 1.579 | 3-methylhept-1-ene | C8H16 | 112 | | - | - | - | - | - | 0.006 | 0.094 |
4 | 1.615 | (Z)-oct-2-ene | C8H16 | 112 | | - | - | 0.018 | - | 0.011 | 0.016 | 0.163 |
5 | 1.814 | Nonane | C9H20 | 128 | | - | - | - | - | 0.011 | 0.013 | 0.084 |
6 | 2.057 | Decane | C10H22 | 142 | | - | - | 0.028 | 0.024 | 0.044 | 0.042 | 0.168 |
7 | 2.182 | 4-methylheptan-1-ol | C8H18O | 130 | | - | - | 0.086 | 0.066 | 0.087 | 0.058 | 0.122 |
8 | 2.432 | Undecane | C11H24 | 156 | | - | - | - | - | 0.024 | 0.021 | 0.12 |
9 | 2.547 | 2-ethylhexyl pentanoate | C13H26O2 | 214 | | 0.024 | - | - | - | - | - | - |
10 | 2.948 | Dodecane | C12H26 | 170 | | - | - | - | - | 0.009 | 0.01 | 0.083 |
11 | 3.601 | Tridecane | C13H28 | 184 | | - | - | - | - | - | 0.007 | 0.027 |
12 | 4.015 | 2-(tert-butyl)-4-methylphenol | C11H16O | 164 | | - | - | - | 0.009 | 0.038 | 0.059 | 0.646 |
13 | 4.157 | 2-ethylhexyl hexanoate | C14H28O2 | 228 | | 0.013 | - | - | - | - | - | - |
14 | 4.295 | (E)-tetradec-5-ene | C14H28 | 196 | | - | - | - | - | - | 0.008 | 0.063 |
15 | 4.358 | Tetradecane | C14H30 | 198 | | - | - | - | - | - | 0.009 | 0.086 |
16 | 4.656 | pentylpentanoate | C10H20O2 | 172 | | - | - | - | - | - | - | 0.018 |
17 | 4.883 | 3-(tert-butyl)-4-methoxyphenol | C11H16O2 | 180 | | - | 0.009 | 0.008 | 0.005 | 0.008 | 0.005 | 0.013 |
18 | 4.981 | 2,6-di-tert-butylcyclohexa-2,5-diene-1,4-dione | C14H20O2 | 220 | | - | 0.005 | 0.012 | 0.005 | - | - | - |
19 | 5.064 | 4,4,5,7,8-pentamethylchroman-2-one | C14H18O2 | 218 | | 0.014 | 0.019 | 0.016 | - | - | - | - |
20 | 5.096 | (E)-tetradec-5-ene | C14H28 | 196 | | - | - | - | - | - | - | 0.055 |
21 | 5.175 | Pentadecane | C15H32 | 212 | | - | - | 0.007 | 0.005 | 0.01 | 0.007 | 0.083 |
22 | 5.281 | 2,6-di-tert-butyl-4-methylphenol | C15H24O | 220 | | 0.833 | 1.692 | 1.402 | 1.472 | 1.13 | 0.492 | 0.363 |
23 | 5.434 | 2-methylbutyl heptanoate | C12H24O2 | 200 | | 0.049 | - | - | - | - | - | - |
24 | 5.550 | isomer of 22 | C15H24O | 220 | - | - | - | - | 0.002 | 0.043 | 0.03 | 0.123 |
25 | 5.909 | (Z)-hexadec-7-ene | C16H32 | 224 | | - | - | - | - | - | - | 0.042 |
26 | 6.013 | Hexadecane | C16H34 | 226 | | - | - | - | - | 0.004 | 0.011 | 0.085 |
27 | 6.446 | 2-ethylhexyl 2-methoxyacetate | C11H22O3 | 202 | | 0.064 | - | - | - | - | - | - |
28 | 6.729 | (E)-heptadec-8-ene | C17H34 | 238 | | - | - | - | - | - | - | 0.062 |
29 | 6.846 | Heptadecane | C17H36 | 240 | | - | - | - | 0.006 | 0.009 | 0.017 | 0.112 |
30 | 7.192 | 7,9-dimethylhexadecane | C18H38 | 254 | | - | - | - | - | - | - | 0.017 |
31 | 7.443 | 3,5-di-tert-butyl-4-hydroxybenzaldehyde | C15H22O2 | 234 | | - | 0.019 | 0.075 | 0.048 | 0.035 | 0.013 | - |
32 | 7.493 | 2-ethylhexyl isobutyl carbonate | C13H26O3 | 230 | | 1.427 | - | - | - | - | - | - |
33 | 7.534 | (E)-octadec-9-ene | C18H36 | 252 | | - | - | - | - | - | - | 0.053 |
34 | 7.661 | Octadecane | C18H38 | 254 | | - | - | - | - | - | 0.016 | 0.096 |
35 | 7.747 | unknown | - | - | - | 0.021 | - | - | - | - | - | - |
36 | 7.880 | (Z)-nonadec-5-ene | C19H38 | 266 | - | - | - | 0.011 | 0.007 | 0.009 | 0.017 | - |
37 | 7.979 | 10-methylnonadecane | C20H42 | 282 | | - | 0.007 | 0.02 | 0.022 | 0.022 | 0.025 | 0.128 |
38 | 8.099 | nonadec-1-ene | C19H38 | 266 | | - | 0.022 | 0.032 | 0.016 | 0.03 | 0.023 | 0.067 |
39 | 8.259 | 2,6,10,14-tetramethylhexadecane | C20H42 | 282 | | - | 0.007 | 0.083 | 0.069 | 0.081 | 0.063 | 0.113 |
40 | 8.310 | 2-(hexadecyloxy)ethan-1-ol | C18H38O2 | 286 | | - | 0.022 | 0.028 | 0.027 | 0.034 | 0.021 | 0.072 |
41 | 8.367 | 4-methylnonadecane | C20H42 | 282 | | - | 0.05 | 0.05 | 0.051 | 0.048 | 0.03 | 0.087 |
42 | 8.445 | Nonadecane | C19H40 | 268 | | - | - | - | - | - | 0.02 | 0.103 |
43 | 8.514 | Eicosane | C20H42 | 282 | - | - | 0.155 | 0.15 | 0.15 | 0.128 | 0.075 | 0.116 |
44 | 8.571 | 2,3-dimethylnonadecane | C21H44 | 296 | | - | 0.065 | 0.067 | 0.036 | 0.043 | 0.034 | 0.057 |
45 | 8.620 | 2-hexyldecan-1-ol | C16H34O | 242 | | - | - | - | - | - | - | 0.055 |
46 | 8.697 | unknown | - | - | - | - | - | - | - | 0.01 | 0.019 | 0.042 |
47 | 8.745 | (E)-2-methylnonadec-7-ene | C20H40 | 280 | | - | 0.048 | 0.058 | 0.055 | 0.06 | 0.039 | 0.116 |
48 | 8.854 | icos-1-ene | C20H40 | 280 | - | - | - | - | - | 0.017 | 0.018 | 0.085 |
49 | 9.022 | (E)-icos-9-ene | C20H40 | 280 | | - | - | - | - | - | - | 0.076 |
50 | 9.073 | (E)-icos-5-ene | C20H40 | 280 | - | - | - | - | - | - | 0.03 | 0.123 |
51 | 9.203 | Heneicosane | C21H44 | 296 | - | - | - | - | - | 0.014 | 0.032 | 0.152 |
52 | 9.431 | olefin (C ≥ 21) | - | - | - | - | - | - | - | 0.016 | 0.023 | 0.04 |
53 | 9.481 | isoparaffin (C ≥ 21) | - | - | - | - | - | - | 0.047 | |||
54 | 9.589 | olefin (C ≥ 21) | - | - | - | - | 0.015 | 0.022 | 0.072 | |||
55 | 9.690 | isoparaffin (C ≥ 21) | - | - | 0.017 | 0.019 | 0.024 | - | - | |||
56 | 9.821 | olefin (C ≥ 21) | - | - | - | - | - | - | 0.04 | |||
57 | 9.936 | normal alkane (C ≥ 21) | - | 0.024 | 0.02 | 0.023 | 0.031 | 0.026 | 0.064 | |||
58 | 10.137 | olefin (C ≥ 21) | - | - | - | - | - | - | 0.037 | |||
59 | 10.188 | isoparaffin (C ≥ 21) | - | - | - | - | - | - | 0.032 | |||
60 | 10.291 | olefin (C ≥ 21) | - | - | - | - | - | - | 0.053 | |||
61 | 10.511 | olefin (C ≥ 21) | - | - | - | - | 0.015 | - | 0.062 | |||
62 | 10.631 | normal alkane (C ≥ 21) | - | 0.015 | - | 0.027 | 0.021 | - | 0.033 | |||
63 | 10.967 | olefin (C ≥ 21) | - | - | - | - | - | - | 0.077 | |||
D1–D18 | 8.135–10.893 | dioctylhexanedioate | C22H42O4 | 370 | - | 10.155 | - | - | - | - | - | - |
N | 10.549 | N-phenylnaphthalen-1-amine | C16H13N | 219 | | 0.450 | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Z.; Yao, T.; Zhang, M.; Hu, J.; Liao, X.; Shen, Y. Effect of Temperature on the Composition of a Synthetic Hydrocarbon Aviation Lubricating Oil. Materials 2020, 13, 1606. https://doi.org/10.3390/ma13071606
Gan Z, Yao T, Zhang M, Hu J, Liao X, Shen Y. Effect of Temperature on the Composition of a Synthetic Hydrocarbon Aviation Lubricating Oil. Materials. 2020; 13(7):1606. https://doi.org/10.3390/ma13071606
Chicago/Turabian StyleGan, Zhuoting, Ting Yao, Meng Zhang, Jianqiang Hu, Xiaoxiao Liao, and Yongli Shen. 2020. "Effect of Temperature on the Composition of a Synthetic Hydrocarbon Aviation Lubricating Oil" Materials 13, no. 7: 1606. https://doi.org/10.3390/ma13071606
APA StyleGan, Z., Yao, T., Zhang, M., Hu, J., Liao, X., & Shen, Y. (2020). Effect of Temperature on the Composition of a Synthetic Hydrocarbon Aviation Lubricating Oil. Materials, 13(7), 1606. https://doi.org/10.3390/ma13071606