The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel
Abstract
1. Introduction
2. Material and Methodology of Research
3. Test Results and Their Analysis
4. Mechanical Properties of HR3C Steel after Service
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Chi, C.; Yu, H.; Xie, X. Advanced Austenitic Heat-Resistant Steels for Ultra-Super-Critical (USC) Fossil Power Plants. In Alloy Steel—Properties and Use; Morales, E.V., Ed.; InTech: Rijeka, Croatia, 2011; pp. 171–201. [Google Scholar]
- Iseda, A.; Okada, H.; Semba, H.; Igarashi, M. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers. Energy Mater. 2007, 2, 199–206. [Google Scholar] [CrossRef]
- Zieliński, A.; Sroka, M.; Hernas, A.; Kremzer, M. The effect of long-term impact of elevated temperature on changes in microstructure and mechanical properties of HR3C steel. Arch. Metall. Mater. 2016, 61, 761–765. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.-D.; Cheng, S.-C.; Liu, C.-M.; Wang, J.-Z. Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature. J. Iron Steel Res. Int. 2014, 21, 765–773. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Li, W.; Tian, J.; Zhong, W.; Lin, J. Evolution of M23C6 phase in HR3C steel aged at 650 °C. Mater. High Temper. 2016, 33, 276–282. [Google Scholar] [CrossRef]
- Wei, L.; Hao, W.; Cheng, Y.; Tan, S. Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy. Mater. Sci. Eng. A 2018, 737, 40–46. [Google Scholar] [CrossRef]
- Hu, Z.-F.; Zhang, Z. Investigation the effect of precipitating characteristic on the creep behavior of HR3C austenitic steel at 650 °C. Mater. Sci. Eng. A 2019, 742, 451–463. [Google Scholar] [CrossRef]
- Zieliński, A.; Golański, G.; Sroka, M.; Dobrzański, J. Estimation of long-term creep strength in austenitic power plant steels. Mater. Sci. Technol. 2016, 32, 780–785. [Google Scholar] [CrossRef]
- Golański, G.; Zielińsk, A.; Purzyńsk, H. Precipitation process in creep-resistant austenitic steels. In Austenitic Stainless Steels; Borek, W., Tański, T., Brytan, Z., Eds.; InTech: Rijeka, Croatia, 2017; pp. 93–112. [Google Scholar]
- Zhou, Y.; Liu, Y.; Zhou, X.; Liu, C.; Yu, J.; Huang, Y.; Li, H.; Li, W. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review. J. Mater. Sci. Technol. 2017, 33, 1448–1456. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Hong, J.; Gao, J.; Zhang, H.; Li, J.; Wang, Q. The evolution of precipitates of 22Cr-25Ni-Mo-Nb-N heat-resistant austenitic steel in long term creep. Mater. Sci. Eng. A-Struct. 2010, 527, 4424–4430. [Google Scholar] [CrossRef]
- Sklenicka, V.; Kucharova, K.; Kvapilova, M.; Svoboda, M.; Kral, P.; Dvorak, J. Creep properties of simulated heat-affected zone of HR3C austenitic steel. Mater. Charact. 2007, 128, 238–247. [Google Scholar] [CrossRef]
- Sun, W.; Qin, X.; Guo, L.L.; Zhou, L. Thermal stability of primary MC carbide and its influence on the performance of acst Ni-base superalloys. Mater. Des. 2015, 69, 81–88. [Google Scholar] [CrossRef]
- Guo, X.; Jia, X.; Gong, J.; Geng, L.; Tang, J.; Jiang, Y.; Ni, Y.; Ynag, X. Effect of long-term aging on microstructure stabilization and mechanical properties of 20Cr32Ni1Nb steel. Mater. Sci. Eng. A 2017, 690, 62–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Z.; Tu, H.; Schmauder, S.; Wu, G. Microstructure evolution in HR3C austenitic steel during long-term creep at 650 °C. Mater. Sci. Eng. A 2017, 681, 74–84. [Google Scholar] [CrossRef]
- Jones, R.; Randle, V.; Owen, G. Carbide precipitation and grain boundary plane selection in overage type 316 austenitic stainless steel. Mater. Sci. Eng. A 2008, 496, 256–261. [Google Scholar] [CrossRef]
- Terada, M.; Escriba, D.M.; Costa, I.; Materna-Morris, E.; Padliha, A.F. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing. Mater. Charact. 2008, 59, 663–668. [Google Scholar] [CrossRef]
- Kaneko, K.; Futunaga, T.; Yamada, K.; Nakada, N.; Kikuchi, M.; Saghi, Z.; Barnad, J.S.; Midgley, P.A. Formation of M23C6—Type precipitates and chromium–depleted zone in austenite stainless steel. Scr. Mater. 2011, 65, 509–512. [Google Scholar] [CrossRef]
- Prat, O.; Garcia, J.; Rojas, D.; Carrasco, C.; Kaysser-Pyzall, A.R. Investigations on coarsening of MX and M23C6 precipitates in 12%Cr creep resistant steels assisted by computational thermodynamics. Mater. Sci. Eng. A 2010, 527, 5976–5983. [Google Scholar] [CrossRef]
- Vujic, S.; Standströ, R.; Sommitsch, C. Precipitation evolution and creep strength modeling of 25Cr20NiNbN austenitic steel. Mater. High Temp. 2015, 32, 607–618. [Google Scholar] [CrossRef]
- Yan, J.; Gu, Y.; Sun, F.; Xu, Y.; Yuan, Y.; Lu, Y.; Yang, Z.; Dang, Y. Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term. Mater. Sci. Eng. A 2016, 675, 289–298. [Google Scholar] [CrossRef]
- Danielsen, H.K.; Hald, J. Influence of Z-phase on long-term creep stability of martensitic 9 to 12% Cr steels. VGB PowerTech. 2009, 5, 68–73. [Google Scholar]
- Li, Y.; Liu, Y.; Liu, C.; Li, C.; Li, H. Mechanism for the formation of Z-phase in 25Cr-20Ni-Nb-N austenitic stainless steel. Mater. Lett. 2018, 233, 16–19. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Cheng, C.-Q.; Fang, Y.Y.; Li, X.-N. Precipitation in 25Cr20NiNbN austenitic steel after ageing at 750 °C. Mater. High Temp. 2015, 32, 461–466. [Google Scholar] [CrossRef]
- Magnusson, H.; Sandstrom, R. Influence of aluminium on creep strength of 9–12% Cr steels. Mater. Sci. Eng. A 2009, 527, 118–125. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, L.; Wang, Q.; Zhu, C. Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep. Mater. Sci. Eng. A 2014, 608, 164–173. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Chen, D.; Sun, J. Precipitate evolution the ageing of Super304H steel and its influence on impact toughness. Mater. Sci. Eng. A 2019, 754, 238–245. [Google Scholar] [CrossRef]
- Solenthaler, C.; Ramesh, M.; Uggowitzer, P.J.; Spolenak, R. Precipitattion strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C, N) formed upon a short-term hardening heat treatment. Mater. Sci. Eng. A 2015, 647, 294–302. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Hong, J.; Gao, J.; Zhang, H.; Wang, Q.; Li, J. The effect of M23C6 on the high-temperature tensile strength of two austenitic heat-resistant steels: 22Cr–25Ni–Mo–Nb–N and 25Cr–20Ni–Nb–N. Mater. Sci. Eng. A 2011, 528, 3625–3629. [Google Scholar] [CrossRef]
- Nikulin, I.; Kipelova, A.; Kaibyshev, R. Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel. Mater. Sci. Eng. A 2012, 554, 61–66. [Google Scholar] [CrossRef]
- Trotter, G.; Baker, I. The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe-20Cr-30Ni-2Nb-5Al. Mater. Sci. Eng. A 2015, 627, 270–276. [Google Scholar] [CrossRef]
- Yan, J.; Gu, Y.; Sun, F.; Michinari, Y.; Zhong, Z.; Yuan, Y.; Lu, J. Microstructural study in a Fe-Ni-base superalloy during creep-rupture at intermediate temperature. Mater. Sci. Eng. A 2015, 639, 15–20. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Almer, J. In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 2013, 440, 81–90. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, L.; Lei, Z.L.; Han, Y.D. Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures. Mater. Sci. Eng. A 2017, 690, 104–119. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Nb | N | C |
---|---|---|---|---|---|---|---|---|---|
0.06 | 0.43 | 1.19 | 0.015 | 0.010 | 25.10 | 19.70 | 0.42 | 0.22 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golański, G.; Zieliński, A.; Sroka, M.; Słania, J. The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel. Materials 2020, 13, 1297. https://doi.org/10.3390/ma13061297
Golański G, Zieliński A, Sroka M, Słania J. The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel. Materials. 2020; 13(6):1297. https://doi.org/10.3390/ma13061297
Chicago/Turabian StyleGolański, Grzegorz, Adam Zieliński, Marek Sroka, and Jacek Słania. 2020. "The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel" Materials 13, no. 6: 1297. https://doi.org/10.3390/ma13061297
APA StyleGolański, G., Zieliński, A., Sroka, M., & Słania, J. (2020). The Effect of Service on Microstructure and Mechanical Properties of HR3C Heat-Resistant Austenitic Stainless Steel. Materials, 13(6), 1297. https://doi.org/10.3390/ma13061297