Mechanical and Electrical Characteristics of WB2 Synthesized at High Pressure and High Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chung, H.Y.; Weinberger, M.B.; Levine, J.B.; Kavner, A.; Yang, J.M.; Tolbert, S.H.; Kaner, R.B. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure. Science 2007, 316, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Rau, J.V.; Ferro, D.; Teghil, R.; Albertini, V.R.; Barinov, S.M. ChemInform Abstract: Superhard Rhenium Diboride Films: Preparation and Characterization. Cheminform 2010, 39. [Google Scholar] [CrossRef]
- Wang, C.; Song, L. Exploring the effects of interlamellar binding modes on the hardness of ReB2 and MoB2 with laminar structure. Can. J. Phys. 2017, 95. [Google Scholar] [CrossRef]
- Weinberger, M.B.; Levine, J.B.; Chung, H.Y.; Cumberland, R.W.; Rasool, H.I.; Yang, J.M.; Kaner, R.B.; Tolbert, S.H. Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1−xRuxB2. Cheminform 2010, 40, 1915–1921. [Google Scholar] [CrossRef]
- Ingole, S.; Liang, H.; Usta, M.; Bindal, C.; Ucisik, A.H. Multi-scale wear of a boride coating on tungsten. Wear 2005, 259, 849–860. [Google Scholar] [CrossRef]
- Kawanowa, H.; Gotoh, Y.; Otani, S.; Souda, R. Structure analysis of the WB 2 (0001) surface. Surf. Sci. 1999, 433–435, 661–665. [Google Scholar] [CrossRef]
- Khor, K.A.; Yu, L.G.; Sundararajan, G. Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 2005, 478, 232–237. [Google Scholar] [CrossRef]
- Usta, M. The characterization of borided pure niobium. Surf. Coat. Technol. 2005, 194, 330–334. [Google Scholar] [CrossRef]
- Xing-Qiu, C.; Fu, C.L.; Krcmar, M.; Painter, G.S. Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB (2) (M=W, Re, Os). Phys. Rev. Lett. 2008, 100, 196403. [Google Scholar]
- Yeh, C.L.; Chen, W.H. Preparation of niobium borides NbB and NbB 2 by self-propagating combustion synthesis. J. Alloys Compd. 2006, 420, 111–116. [Google Scholar] [CrossRef]
- Brandstötter, J.; Lengauer, W. Multiphase reaction diffusion in transition metal-boron systems. J. Alloys Compd. 1997, 229, 390–396. [Google Scholar] [CrossRef]
- Locci, A.M.; Licheri, R.; Orrù, R.; Cao, G. Reactive Spark Plasma Sintering of rhenium diboride. Ceram. Int. 2009, 35, 397–400. [Google Scholar] [CrossRef]
- Shibuya, M.; Ohyanagi, M. Effect of nickel boride additive on simultaneous densification and phase decomposition of TiB-WB solid solutions by pressureless sintering using induction heating. J. Eur. Ceram. Soc. 2007, 27, 301–306. [Google Scholar] [CrossRef]
- Li, B.; Sun, H.; Chen, C. First-principles calculation of the indentation strength ofFeB4. Phys. Rev. B 2014, 90. [Google Scholar] [CrossRef]
- Brazhkin, V.; Dubrovinskaia, N.; Nicol, M.; Novikov, N.; Riedel, R.; Solozhenko, V.; Zhao, Y. From our readers: What does ‘harder than diamond’ mean? Nat. Mater. 2004, 3, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; He, D.; Wang, J.; Fang, L.; Lei, L.; Li, Y.; Hu, J.; Kou, Z.; Bi, Y. Is Rhenium Diboride a Superhard Material? Adv. Mater. 2010, 20, 4780–4783. [Google Scholar] [CrossRef]
- Kodas, T. Handbook of Chemical vapor Deposition (CVD), Principles, Technology, and Applications; By Hugh O. Pierson, Noyes: Park Ridge, NJ, USA, 1992. 436 pp., hardback, $ 68, ISBN 0-8155-1300-3. Adv. Mater. 1993, 5, 401–402. [Google Scholar] [CrossRef]
- Gou, H.; Hou, L.; Zhang, J.; Li, H.; Sun, G.; Gao, F. First-principles study of low compressibility osmium borides. Appl. Phys. Lett. 2006, 88, 1268. [Google Scholar] [CrossRef]
- Kaner, R.B.; Gilman, J.J.; Tolbert, S.H. Materials science. Designing superhard materials. Science 2005, 308, 1268. [Google Scholar] [CrossRef]
- Schumacher, S.; Birringer, R.; Strauβ, R.; Gleiter, H. Diffusion of silver in nanocrystalline copper between 303 and 373 K. Acta Metall. 1989, 37, 2485–2488. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Song, L.; Xie, Y. Mechanical and Electrical Characteristics of WB2 Synthesized at High Pressure and High Temperature. Materials 2020, 13, 1212. https://doi.org/10.3390/ma13051212
Wang C, Song L, Xie Y. Mechanical and Electrical Characteristics of WB2 Synthesized at High Pressure and High Temperature. Materials. 2020; 13(5):1212. https://doi.org/10.3390/ma13051212
Chicago/Turabian StyleWang, Changchun, Lele Song, and Yupeng Xie. 2020. "Mechanical and Electrical Characteristics of WB2 Synthesized at High Pressure and High Temperature" Materials 13, no. 5: 1212. https://doi.org/10.3390/ma13051212
APA StyleWang, C., Song, L., & Xie, Y. (2020). Mechanical and Electrical Characteristics of WB2 Synthesized at High Pressure and High Temperature. Materials, 13(5), 1212. https://doi.org/10.3390/ma13051212