Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings
Abstract
:1. Introduction
2. Experimental Details
2.1. Substrate Preparation
2.2. Micro Arc Oxidation Process
2.3. Coating Microstructure and Wear Properties
3. Results and Discussion
3.1. Interactive Orthogonal Test
3.2. Microstructure and Phase Analysis of the Ceramic Coating
3.3. Wear Properties of Ceramic Coating
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matykina, E.; Arrabal, R.; Mohamed, A.; Skeldon, P.; Thompson, G.E. Plasma electrolytic oxidation of pre-anodized aluminium. Corros. Sci. 2009, 51, 2897–2905. [Google Scholar] [CrossRef]
- Wheeler, J.M.; Curran, J.A.; Shrestha, S. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation coatings on aluminium alloy 5052. Surf. Coat. Technol. 2012, 207, 480–488. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, L.; Li, C.; Li, Z.; Li, H. Morphology and wear resistance of composite coatings formed on a TA2 substrate using hot-dip aluminising and micro-arc oxidation technologies. Materials 2019, 12, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, D.; Xu, G.; Yang, Y.; Chen, S. Multiphase ceramic coatings with high hardness and wear resistance on 5052 aluminum alloy by a microarc oxidation method. ACS Sustain. Chem. Eng. 2018, 6, 2431–2437. [Google Scholar] [CrossRef]
- Kyziol, L.; Komarov, A. Influence of micro-arc oxidation coatings on stress corrosion of AlMg6 alloy. Materials 2020, 13, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byeon, S.S.; Wang, K.; Seo, Y.J.; Jung, Y.G.; Koo, B.H. Structural properties of the oxide coatings prepared by electrolyte plasma process on the Al 2021 alloy in various nitrogen solutions. Ceram. Int. 2012, 38, S665–S668. [Google Scholar] [CrossRef]
- Song, W.; Jiang, B.; Ji, D. Improving the tribological performance of MAO coatings by using a stable sol electrolyte mixed with cellulose additive. Materials 2019, 12, 4226. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.; Wolicki, I.; Kossenko, A.; Zinigrad, M.; Borodianskiy, K. Coating formation on Ti-6Al-4V alloy by micro arc oxidation in molten salt. Materials 2018, 11, 1611. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, Z.; Li, Y.; Chen, H. Characterization of micro-arc oxidation coatings on 6N01 aluminum alloy under different temperature control modes. J. Mater. Eng. Perform. 2018, 27, 1890–1897. [Google Scholar] [CrossRef]
- Rudnev, V.S.; Yarovaya, T.P.; Nedozorov, P.M.; Mansurov, Y.N. Wear-resistant oxide coatings on aluminum alloy formed in borate and silicate aqueous electrolytes by plasma electrolytic oxidation. Prot. Met. Phys. Chem. Surf. 2017, 53, 466–474. [Google Scholar] [CrossRef]
- Wang, P.; Wu, T.; Xiao, Y.T.; Zhang, L.; Pu, J.; Cao, W.J.; Zhong, X.M. Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density. Vacuum 2017, 142, 21–28. [Google Scholar] [CrossRef]
- Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G.E. Investigation and the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochim. Acta 2009, 54, 6767–6778. [Google Scholar] [CrossRef]
- Rokosz, K.; Hryniewicz, T.; Gaiaschi, S.; Chapon, P.; Raaen, S.; Matysek, D.; Dudek, L.; Pietrzak, K. Novel porous phosphorus-calcium-magnesium coatings on titanium with copper or zinc obtained by dc plasma electrolytic oxidation: Fabrication and characterization. Materials 2018, 11, 1680. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.; Kossenko, A.; Borodianskiy, K. Study of the effect of current pulse frequency on Ti-6Al-4V alloy coating formation by micro arc oxidation. Materials 2019, 12, 3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Zhang, Y.; Dou, B.; Zeng, X.; Lin, X. Deposition time effects on structure and corrosion resistance of duplex MAO/Al coatings on AZ31B Mg alloy. Anti-Corros. Methods Mater. 2017, 64, 357–364. [Google Scholar] [CrossRef]
- Sakhnenko, N.; Ved, M.; Mayba, M.; Karakurkchi, A.; Galak, A. Mixed oxide films formed on titanium alloy by plasma electrolytic oxidation. Surf. Eng. Appl. Electrochem. 2018, 54, 203–209. [Google Scholar] [CrossRef]
- Kuznetsov, Y.A.; Kravchenko, I.N.; Goncharenko, V.V.; Glinskii, M.A. Machining of the ceramic oxide coating formed by plasma electrolytic oxidation. Russ. Met. 2018, 13, 1268–1272. [Google Scholar] [CrossRef]
- Tran, Q.-P.; Sun, J.-K.; Kuo, Y.-C.; Tseng, C.-Y.; He, J.-L. Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy. J. Alloy. Compd. 2017, 697, 326–332. [Google Scholar] [CrossRef]
- Arslan, E.; Totik, Y.; Demirci, E.E.; Vangolu, Y.; Alsaran, A.; Efeoglu, I. High temperature wear behavior of aluminum oxide layers produced by AC micro arc oxidation. Surf. Coat. Technol. 2009, 204, 829–833. [Google Scholar] [CrossRef]
- Yi, P.; Yue, W.; Liang, J.; Hou, B.; Sun, J.; Gu, Y.H.; Liu, J. Effects of nanocrystallized layer on the tribological properties of micro-arc oxidation coatings on 2618 aluminum alloy under high temperatures. Int. J. Adv. Manuf. Technol. 2018, 96, 1635–1646. [Google Scholar] [CrossRef]
- Xue, W.; Deng, Z.; Lai, Y.; Cen, R. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy. J. Am. Ceram. Soc. 1998, 81, 1365–1368. [Google Scholar] [CrossRef]
- Jin, F.; Chu, P.K.; Tong, H. Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation. Appl. Surf. Sci. 2006, 253, 863–868. [Google Scholar] [CrossRef]
- Tian, J.; Luo, Z.; Qi, S.; Sun, X. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surf. Coat. Technol. 2002, 154, 1–7. [Google Scholar] [CrossRef]
- Xue, W.; Deng, Z.; Chen, R.; Zhang, T. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Film 2000, 372, 114–117. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Bao, Y.; Yang, H. Dry sliding wear behaviors of intrinsically sintered micro-arc oxidation coatings on pure aluminum. Adv. Mater. Res. 2011, 154–155, 1000–1003. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.; Ding, H.; Wang, M.; Yu, M.; Dai, Z. Friction characteristic of micro arc oxidative Al2O3 coatings sliding against Si3N4 balls in various environments. Surf. Coat. Technol. 2008, 202, 3808–3814. [Google Scholar] [CrossRef]
- Liu, J.; Yue, W.; Liang, J.; Hou, B.; Sun, J.; She, D.; Gu, Y.; Yi, P. Effects of evaluated temperature on tribological behaviors of micro-arc oxidated 2219 aluminum alloy and their filed application. Int. J. Adv. Manuf. Technol. 2018, 96, 1725–1740. [Google Scholar] [CrossRef]
Level | Micro arc oxidation parameters | |||
---|---|---|---|---|
(A) Current I (Positive/Negative) (A) | (B) Power frequency F (Hz) | (C) Duty cycle (%) | (D) Oxidation time (min) | |
1 | 5/4 | 500 | 50/10 | 30 |
2 | 7/4 | 800 | 50/30 | 40 |
Sample | A (A) | B (Hz) | A × B | C (%) | A × C | B × C | D (min) | T (thickness/μm) | W (worn width/μm) |
---|---|---|---|---|---|---|---|---|---|
1 | 1(5/4) | 1(500) | 1 | 1(50/10) | 1 | 1 | 1(30) | 18.1 ± 1.3 | 572 ± 10 |
2 | 1 | 1 | 1 | 2(50/30) | 2 | 2 | 2(40) | 21.3 ± 1.4 | 376 ± 12 |
3 | 1 | 2(800) | 2 | 1 | 1 | 2 | 2 | 20.5 ± 1.6 | 519 ± 9 |
4 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 15.4 ± 1.0 | 588 ± 11 |
5 | 2(7/4) | 1 | 2 | 1 | 2 | 1 | 2 | 26.8 ± 1.4 | 253 ± 13 |
6 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 23.2 ± 1.2 | 302 ± 12 |
7 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 19.4 ± 1.5 | 551 ± 8 |
8 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 26.5 ± 1.6 | 276 ± 8 |
Mean1/T | 18.83 | 22.10 | 21.33 | 21.20 | 22.08 | 21.70 | 19.025 | ||
Mean 2/T | 23.98 | 20.45 | 21.48 | 21.60 | 20.73 | 21.10 | 23.775 | ||
Range T | 5.15 | 1.65 | 0.15 | 0.40 | 1.35 | 0.60 | 4.75 | ||
Mean1/W | 513.75 | 375.75 | 443.75 | 473.75 | 417.25 | 422.25 | 503.25 | ||
Mean2/W | 345.50 | 483.50 | 415.50 | 385.50 | 442.00 | 437.00 | 356.00 | ||
Range W | 168.25 | 107.75 | 28.25 | 88.25 | 24.75 | 14.75 | 147.25 | ||
The influence of the parameters on the coating thickness: A > D > B > A × C > B × C > C > A × B | |||||||||
The influence of the parameters on the grinding crack width: A > D > B > C > A × B > A × C > B× C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Shang, H.; Ma, B.; Zhang, R.; Guo, L.; Su, B. Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings. Materials 2020, 13, 970. https://doi.org/10.3390/ma13040970
Qi X, Shang H, Ma B, Zhang R, Guo L, Su B. Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings. Materials. 2020; 13(4):970. https://doi.org/10.3390/ma13040970
Chicago/Turabian StyleQi, Xiaoben, Hailong Shang, Bingyang Ma, Rulin Zhang, Leyang Guo, and Bo Su. 2020. "Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings" Materials 13, no. 4: 970. https://doi.org/10.3390/ma13040970
APA StyleQi, X., Shang, H., Ma, B., Zhang, R., Guo, L., & Su, B. (2020). Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings. Materials, 13(4), 970. https://doi.org/10.3390/ma13040970