Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile
Abstract
:1. Introduction
2. Object and Methodology of Research and Test Bench
2.1. Composite Test Materials
2.2. Ballistic Test Bench
2.3. Preliminary Studies on the Projectile Structure
2.4. Metallographic Tests
2.5. Numerical Analysis
3. Results and Discussion
3.1. Analysis of the Shooting Samples
3.2. Macroscopic Analysis of the Shot Samples
3.3. Analysis of Numerical Results
3.4. Comparison of Experimental and Numerical Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abrate, S. Impact on Composite Structures; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Ben-Dor, G.; Dubinsky, A.; Elperin, T. Applied High-Speed Plate Penetration Dynamics; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Bhatnagar, A. Lightweight Ballistic Composites. Military and Law-Enforcement Applications, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Crouch, I.G. The Science of Armour Materials; Elsevier: Duxford, UK, 2017. [Google Scholar]
- Ozsahin, E.; Tolun, S. On the comparison of the ballistic response of coated aluminum plates. Mater. Des. 2010, 31, 3188–3193. [Google Scholar] [CrossRef]
- Anderson, C.E.; Riegal, J.P. A penetration model for metallic targets based on experimental data. Int. J. Impact Eng. 2015, 80, 24–35. [Google Scholar] [CrossRef]
- Ben-Dor, G.; Dubinsky, A.; Elperin, T. Analytical engineering models of high speed normal impact by hard projectiles on metal shields. Cent. Eur. J. Eng. 2013, 3, 349–373. [Google Scholar] [CrossRef] [Green Version]
- Børvik, T.; Forrestal, M.J.; Hopperstad, O.S.; Warren, T.L.; Langseth, M. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—Calculations. Int. J. Impact Eng. 2009, 36, 426–437. [Google Scholar] [CrossRef]
- Hoo Fatt, M.S.; Sirivolu, D. A wave propagation model for the high velocity impact response of a composite sandwich panel. Int. J. Impact Eng. 2010, 37, 117–130. [Google Scholar] [CrossRef]
- Marsh, G. Composite fight for share of military applications. Reinf. Plast. 2005, 49, 18–22. [Google Scholar] [CrossRef]
- Medvedovski, E. Wear-resistant engineering ceramics. Wear 2001, 249, 821–828. [Google Scholar] [CrossRef]
- Rahman, N.F.; Abdullah, S.; Abdullah, M.F.; Zamri, W.F.H.; Omar, M.Z.; Sajuri, Z. Experimental and numerical investigation on the layering configuration effect to the laminated aluminium/steel panel subjected to high speed impact test. Metals 2018, 8, 732. [Google Scholar] [CrossRef] [Green Version]
- Reyes, G.; Cantwell, W.J. The high velocity impact response of composite and FML-reinforced sandwich structures. Compos. Sci. Technol. 2004, 64, 35–54. [Google Scholar] [CrossRef]
- Rojek, M.; Szymiczek, M.; Stabik, J.; Mezyk, A.; Jamroziak, K.; Krzystała, E.; Kurowski, J. Composite materials with the polymeric matrix applied to ballistic shields. Arch. Mater. Sci. Eng. 2013, 63, 26–35. [Google Scholar]
- Stanislawek, S.; Morka, A.; Niezgoda, T. Pyramidal ceramic armor ability to defeat projectile threat by changing its trajectory. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 843–849. [Google Scholar] [CrossRef]
- Garcia-Avila, M.; Portanova, M.; Rabiei, A. Ballistic performance of a composite metal foam-ceramic armor system. Proc. Mater. Sci. 2014, 4, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Compton, B.G.; Zok, F.W. Impact resistance of TiC-based cermets. Int. J. Impact Eng. 2013, 62, 75–87. [Google Scholar] [CrossRef]
- Mahendra, K.V.; Radhakrishna, K. Characterization of stir cast Al-Cu-(fly ash + SiC) hybrid metal matrix composites. J. Compos. Mater. 2009, 44, 989–1005. [Google Scholar] [CrossRef]
- Matysiak, P.; Jozwiak, S.; Czujko, T. The kinetics of non-isothermal iron and aluminum powder mixtures sintering in protective atmosphere. J. Alloys Compd. 2013, 549, 92–99. [Google Scholar] [CrossRef]
- Bhoi, N.K.; Singh, H.; Pratap, S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles—A review. J. Compos. Mater. 2019. [Google Scholar] [CrossRef]
- Maurya, M.; Kumar, S.; Bajpai, V. Assessment of the mechanical properties of aluminium metal matrix composite: A review. J. Reinf. Plast. Comp. 2019, 38, 267–298. [Google Scholar] [CrossRef]
- Zweben, C.H.; Beaumont, P. Comprehensive Composite Materials II, 2nd ed.; Elsevier: London, UK, 2018. [Google Scholar]
- Swab, J.J.; Sandoz-Rosado, E.J. Identifying Opportunities in the Development of Ceramic Matrix Composite (CMC) Materials for Armor Applications; ARL-TR-7987; US Army Research Laboratory: Fort Belvoir, VA, USA, 2017. [Google Scholar]
- Mitra, R. Intermetallic matrix composites. In Properties and Applications; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Leea, M.; Park, S.; Jo, I.; Lee, S. Analysis of metal matrix composite (MMC) applied armor system. Procedia Eng. 2017, 204, 100–107. [Google Scholar] [CrossRef]
- Vo, H.Q.; Sorensen, J.; Klier, R.M.; Sanaty-Zadeh, A.; Bayansan, D.; Seidman, D.V.; Dunand, D.V. Development of a precipitation-strengthened matrix for non-quenchable aluminum metal matrix composites. JOM 2016, 68, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Grujicic, M.; Snipes, J.S.; Ramaswami, S. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs): A computational investigation. AIMS Mater. Sci. 2016, 3, 686–721. [Google Scholar] [CrossRef]
- Karamis, M.B.; Cerit, A.A.; Nair, F. Mutual action between MMCS structureand projectile after ballistic impact. J. Compos. Mater. 2008, 42, 2483–2498. [Google Scholar] [CrossRef]
- Karamis, M.B.; Tasdemirci, A.; Nair, F. Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballistic impact. Compos. Part A Appl. Sci. Manuf. 2003, 34, 217–226. [Google Scholar] [CrossRef]
- Carbajal, L.; Jovicic, J.; Kuhlmann, H. Assault rifle bullet-experimental characterization and computer (FE) modeling. In Experimental and Applied Mechanics; Proulx, T., Ed.; Springer: New York, NY, USA, 2011; Volume 6, pp. 651–668. [Google Scholar]
- Pickering, E.G.; O’Masta, M.R.; Wadley, H.N.G.; Deshpande, V.S. Effect of confinement on the static and dynamic indentation response of model ceramic and cermet materials. Int. J. Impact Eng. 2016, 110, 123–137. [Google Scholar] [CrossRef]
- Loiseau, J.; Nabavi, A.; Capozzi, A.; Petel, O.E.; Goroshin, S.; Barthelat, F.; Frost, D.L.; Higgins, A.J. Ballistic response of chromium/chromium-sulfide cermets. J. Dyn. Behav. Mater. 2015, 1, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Crouch, I.G. Body armour-New materials, new systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T.; Chin, E.S.C. Comparison of the plastic deformation and failure of A359/SiC and 6061-T6/Al2O3 metal matrix composites under dynamic tension. Mater. Sci. Eng. 2004, A371, 359–370. [Google Scholar] [CrossRef]
- Zaera, R.; Sanchez-Saez, S.; Perez-Castellanos, J.L.; Navarro, C. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Compos. Part A Appl. Sci. Manuf. 2000, 31, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Kurzawa, A.; Pyka, D.; Pach, A.; Jamroziak, K.; Bocian, M. Numerical modeling of the microstructure of ceramic-metallic materials. Proc. Eng. 2017, 199, 1459–1500. [Google Scholar] [CrossRef]
- Kurzawa, A.; Pyka, D.; Jamroziak, K.; Bocian, M.; Kotowski, P.; Widomski, P. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles. Compos. Struct. 2018, 201, 834–844. [Google Scholar] [CrossRef]
- Kurzawa, A.; Bocian, M.; Jamroziak, K.; Pyka, D. Analysis of ceramic-metallic composites of ballistic resistance on shots by 5.56 mm ammunition. In Proceedings of the 23rd Proceedings International Conference on Engineering Mechanics, Svratka, Czech Republic, 15–18 May 2017; Fuis, V., Ed.; Brno University of Technology: Brno, Czech Republic, 2017; Volume 23, pp. 574–577. [Google Scholar]
- Kurzawa, A.; Kaczmar, J.W. Bending strength of composite materials with EN AC-44200 matrix reinforced with Al2O3 particles. Arch. Foundry Eng. 2015, 15, 61–64. [Google Scholar]
- European Standard EN 1522. Windows, Doors, Shutters and Blinds-Bullet Resistance-Requirements and Classification; European Standard EN 1522; CEN: Brussels, Belgium, 1998. [Google Scholar]
- MIL-STD-662F. V50 Ballistic Test for Armor; US Army Research Laboratory: Aberdeen Proving Ground, MD, USA, 1987. [Google Scholar]
- Bocian, M.; Jamroziak, K.; Pyka, D.; Babiej, E. Numerical analysis of energy absorption by sandwich panels on the aramid fiber backing. In Engineering Mechanics 2019; Zolotarev, I., Vojtěch, R., Eds.; Institute of Thermomechanics of the Czech Academy of Sciences: Prague, Czech Republic, 2019; Volume 25, pp. 53–56. [Google Scholar]
- Rozumek, D.; Marciniak, Z.; Lesiuk, G.; Correia, J.A.F.O. Mixed mode I/II/III fatigue crack growth in Steel S355. Proc. Struct. Integr. 2017, 5, 896–903. [Google Scholar] [CrossRef]
- Kılıc, N.; Ekici, B. Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. Mater. Des. 2013, 44, 35–48. [Google Scholar] [CrossRef]
- Mazurkiewicz, L.; Malachowski, J.; Baranowski, P. Optimization of protective panel for critical supporting elements. Compos. Struct. 2015, 134, 493–505. [Google Scholar] [CrossRef]
- Murugesan, M.; Jung, D.J. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials 2019, 12, 609. [Google Scholar] [CrossRef] [Green Version]
- Nasr, M.N.A.; Ghandehariun, A.; Kishawy, H.A. A physics-based model for metal matrix composites deformation during machining: A modified constitutive equation. J. Eng. Mater. Technol. 2017, 139, 011003. [Google Scholar] [CrossRef]
- Dunaj, P.; Dolata, M.; Berczyński, S. Model order reduction adapted to steel beams filled with a composite material. In Proceedings of the 39th International Conference on Information Systems Architecture and Technology—ISAT 2018, Nysa, Poland, 16–18 September 2018; Świątek, J., Borzemski, L., Wilimowska, Z., Eds.; Springer: Cham, Switzerland, 2018; Volume 853, pp. 3–13. [Google Scholar]
- Murugesan, M.; Lee, S.; Kim, D.; Kang, Y.H.; Kim, N. A comparative study of ductile damage models approaches for joint strength prediction in hot shear joining process. Procedia Eng. 2017, 207, 1689–1694. [Google Scholar] [CrossRef]
- Baranowski, P.; Gieleta, R.; Malachowski, J.; Damaziak, K.; Mazurkiewicz, L. Split Hopkinson pressure bar impulse experimental measurement with numerical validation. Metrol. Meas. Syst. 2014, XXI, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, P.; Gieleta, R.; Malachowski, J.; Damaziak, K.; Mazurkiewicz, L. Study on computational methods applied to modeling of pulse shaper in split-Hopkinson bar. Arch. Mech. 2014, 66, 429–452. [Google Scholar]
- Kucewicz, M.; Baranowski, P.; Malachowski, J.; Trzcinski, W.; Szymanczyk, L. Numerical modelling of cylindrical test for determining Jones-Wilkins-Lee equation parameters. In Lecture Notes in Mechanical Engineering; Rusinski, R., Pietrusiak, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 388–394. [Google Scholar]
- Pandya, K.S.; Pothnis, J.R.; Ravikumar, G.; Naik, N.K. Ballistic impact behavior of hybrid composites. Mater. Des. 2013, 44, 128–135. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Chen, L.; Zhang, S.; Pan, N. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate. Mater. Des. 2014, 54, 315–322. [Google Scholar] [CrossRef]
- Abrate, S. Ballistic impacts on composite and sandwich structures. In Major Accomplishments in Composite Materials and Sandwich Structures; Daniels, I.M., Gdoutos, E.E., Rajapakse, Y.D.S., Eds.; Springer: Dordrecht, Heidelberg, The Netherlands, 2009; pp. 465–501. [Google Scholar]
- Serjouei, A.; Chi, R.; Sridhar, I.; Tan, G.E.B. Empirical ballistic limit velocity model for bi-layer ceramic–metal armor. Int. J. Prot. Struct. 2015, 6, 509–527. [Google Scholar] [CrossRef]
- Wisniewski, A.; Zokowski, P. Numerical-experimental evaluation of the armour protection capabilities. Probl. Mechatron. Armament Aviat. Saf. Eng. 2015, 6, 7–18. [Google Scholar] [CrossRef]
- Akin, J.E. Finite Element Analysis with Error Estimators; Elsevier: Oxford, UK, 2005. [Google Scholar]
Element [% Wt] | Zn | Mg | Cu | Fe | Si | Mn | Cr | Zr | Ti |
---|---|---|---|---|---|---|---|---|---|
Chemical composition according to the EN 573-1 standard | 5.1–6.1 | 2.1–2.9 | 1.2–2.0 | Max 0.50 | Max 0.40 | Max 0.30 | 0.18– 0.28 | Zr+Ti Max 0.25 | |
Results of spectral analysis | 5.66 | 2.2 | 1.64 | 0.16 | 0.22 | 0.19 | 0.19 | 0.06 | 0.08 |
Chemical Composition [% Wt] | α-Al2O3 | SiO2 | Fe2O3 | Na2O | CaO | TiO2 | K2O |
---|---|---|---|---|---|---|---|
>99.0 | <0.03 | <0.04 | <0.19 | <0.01 | <0.01 | <0.01 | |
Density: 3.95 [g/cm3]; particle size: 3–6 [μm] |
Materials | Density [kg/m3] | HBW 2.5/675N | Rm [MPa] | E [GPa] | Rg [MPa] | Rc [MPa] | Rp0.2 [MPa] | Porosity [% vol.] | Impact [kJ/m2] |
---|---|---|---|---|---|---|---|---|---|
Matrix AW-7075 | 2810 | 117 | 410 | 81 | 320 | 1091 | 292 | 1.2 | 6.7 |
30% vol. | 3150 | 158 | 478 | 142 | 530 | 666 | 396 | 2.6 | 2.5 |
40% vol. | 3270 | 175 | 448 | 185 | 520 | 563 | 379 | 2.9 | 2.1 |
Element [% Wt] | C | Si | Mn | P | S | Al | Cr | Ni | Cu |
---|---|---|---|---|---|---|---|---|---|
Core | 0.08 | 0.04 | 0.32 | 0.018 | 0.027 | 0.01 | 0.01 | 0.01 | <0.01 |
Jacket | 0.07 | 0.03 | 0.34 | 0.020 | 0.024 | 0.09 | 0.01 | 0.01 | 0.03 |
Element | Weight [%] | Atomic [%] |
---|---|---|
Copper | 89.3 | 89.6 |
Zinc | 10.7 | 10.4 |
Element | Type | Size | Quantity |
---|---|---|---|
Jacket | Tet | 1.0 | 5038 |
Core | Tet | 1.0 | 4105 |
Sample | Tet | 1.0 | 248,125 |
Specification | E [GPa] | ν [-] | ρ [kg/m3] | A [MPa] | B [MPa] | m [-] | n [-] |
---|---|---|---|---|---|---|---|
Core (steel—St45) | 210 | 0.32 | 7800 | 430 | 820 | 1.03 | 0.3 |
Lead jacket (alloy of Pb1 and antimony) | 16 | 0.42 | 11,270 | 5.15 | 3.5 | 1.03 | 0.5 |
Jacket (brass M90) | 210 | 0.33 | 7800 | 350 | 420 | 1.03 | 0.3 |
AW-7075 | 81 | 0.3 | 2810 | 292 | 410 | 1.00 | 0.4 |
30% Al2O3 | 142 | 0.25 | 3150 | 396 | 478 | 1.00 | 0.3 |
40% Al2O3 | 185 | 0.23 | 3270 | 379 | 448 | 1.00 | 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurzawa, A.; Pyka, D.; Jamroziak, K.; Bajkowski, M.; Bocian, M.; Magier, M.; Koch, J. Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile. Materials 2020, 13, 769. https://doi.org/10.3390/ma13030769
Kurzawa A, Pyka D, Jamroziak K, Bajkowski M, Bocian M, Magier M, Koch J. Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile. Materials. 2020; 13(3):769. https://doi.org/10.3390/ma13030769
Chicago/Turabian StyleKurzawa, Adam, Dariusz Pyka, Krzysztof Jamroziak, Marcin Bajkowski, Miroslaw Bocian, Mariusz Magier, and Jan Koch. 2020. "Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile" Materials 13, no. 3: 769. https://doi.org/10.3390/ma13030769
APA StyleKurzawa, A., Pyka, D., Jamroziak, K., Bajkowski, M., Bocian, M., Magier, M., & Koch, J. (2020). Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile. Materials, 13(3), 769. https://doi.org/10.3390/ma13030769