Internal GFRP Reinforcement of Low-Grade Maritime Pine Duo Timber Beams
Abstract
:1. Introduction
1.1. State of the Art
1.2. Objectives
2. Materials and Methods
2.1. Timber
2.2. GFRP Reinforcements
2.3. Adhesive
2.4. Specimen Preparation
2.5. Experimental Setup
3. Results and Discussion
3.1. Failure Modes and Load-deflection Behavior
3.2. Bending Stiffness
3.3. Ultimate Moment Capacity
3.4. Statistical Analysis
4. Conclusions
- Maritime pine duo beams with a low ratio (less than 2%) of GFRP reinforcements (unidirectional sheets with an areal mass of 1200 g/m2) attached on the tension zone exhibited higher bending stiffness and ultimate moment capacity than unreinforced duo beams.
- Using a modest reinforcement ratio of 1.07%, the GFRP sheets increased the bending stiffness by 8.37% and the ultimate moment by 18.45%.
- Theoretical increase in bending stiffness calculated by the transformed section method was over 1.37%, whereas the experimental improvement exceeded 8.37%. In terms of ultimate moment capacity, the theoretical increase was greater than 2.14%, whereas the experimental improvement exceeded 18.45%.
- Reinforced duo beams exhibited larger ultimate deformations, increasing from 44.55 mm in the unreinforced beams to 55.43 mm in the reinforced beams; as a result, higher tensile strains and stresses were achieved in the timber. The average ultimate stress in the timber increased by 24.42%.
- Reinforced duo beams could resist an ultimate load 1.15 times greater than unreinforced duo beams.
- The variation in mechanical properties decreased in the reinforced beams. This likely involved some reduction in the influence of defects and singularities in the timber.
- The low cost of GFRP sheets compared to other reinforcement types (for example CFRPs or BFRPs) and the achieved improvements in low-grade maritime pine duo beams from low reinforcement ratios (< 2%) show a possible commercial development of sustainable GFRP-reinforced timber duo beams.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, J.; Edwards, S.; Mundy, J.; Bonfield, P. Life Cycle Impacts of Timber: A Review of the Environmental Impacts of Wood Products in Construction; BRE Press: Watford, UK, 2008. [Google Scholar]
- Thelandersson, S.; Larsen, H.J. Timber Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brazier, J.D. The effect of forest practices on quality of harvested crop. For. Int. J. For. Res. 1977, 50, 49–66. [Google Scholar] [CrossRef]
- Castro, G.; Paganini, F. Mixed glued laminated timber of poplar and Eucalyptus grandis clones. Holz Roh. Werkst. 2003, 61, 291–298. [Google Scholar] [CrossRef]
- Johansson, G.; Kliger, R.; Perstorper, M. Quality of structural timber-product specification system required by end-users. Holz Roh. Werkst. 1994, 52, 42–48. [Google Scholar] [CrossRef]
- Parvez, A. The Reinforcement of Timber for Structural Applications and Repair. Ph.D. Thesis, Department of Mechanical Engineering, University of Bath, Bath, UK, 2004. [Google Scholar]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.L.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fibre-Reinforced polymer composites for construction—State of the art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Schober, K.U.; Harte, A.M.; Kloger, R.; Jockwer, R.; Xu, Q.; Chen, J.F. FRP reinforcement of timber structures. Constr. Build. Mater. 2015, 97, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Borri, A.; Corradi, M.; Grazini, A. A method for flexural reinforcement of old wood beams with CFRP materials. Compos. Part B 2005, 36, 143–153. [Google Scholar] [CrossRef]
- De Jesús, A.; Pinto, J.; Morais, J. Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Constr. Build. Mater. 2012, 35, 817–828. [Google Scholar] [CrossRef]
- Nowak, T.P.; Jasienko, J.; Czepizák, D. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr. Build. Mater. 2013, 40, 197–206. [Google Scholar] [CrossRef]
- Corradi, M.; Borri, A.; Castori, G.; Speranzini, E. Fully Reversible Reinforcement of Softwood Beams with Unbonded Composite Plates. Compos. Struct. 2016, 149, 54–68. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, P.; Cobo, A.; González, M. Analysis of the flexural stiffness of timber beams reinforced with carbon and basalt composite materials. Compos. Part B 2016, 86, 152–159. [Google Scholar] [CrossRef]
- Gómez, E.P.; González, M.N.; Hosokawa, K.; Cobo, A. Experimental study of flexural behavior of timber beams reinforced with different kinds of FRP and metallic fibers. Compos. Struct. 2019, 213, 308–316. [Google Scholar] [CrossRef]
- Raftery, G.M.; Rodd, P.D. FRP reinforcement of low-grade glulam timber bonded with wood adhesive. Constr. Build. Mater. 2015, 91, 116–125. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W.; Lu, W.; Zhu, S.; Geng, Q. Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Constr. Build. Mater. 2016, 106, 550–563. [Google Scholar] [CrossRef]
- Thorhallsson, E.R.; Hinriksson, G.I.; Snæbjörnsson, J.T. Strength and stiffness of glulam beams reinforced with glass and basalt fibres. Compos. Part B 2017, 115, 300–307. [Google Scholar] [CrossRef]
- O’Ceallaigh, C.; Sikora, K.; McPolin, D.; Harte, A.M. The mechano-sorptive creep behavior of basalt FRP reinforced timber elements in a variable climate. Eng. Struct. 2019, 200, 109702. [Google Scholar] [CrossRef]
- Féderation International Du Béton. Design and use of externally bonded FRP reinforcement for RC structures. Bulletin 2001, 14, 51–58. [Google Scholar]
- Basterra, L.A.; Acuña, L.; Casado, M.; López, G.; Bueno, A. Strength testing of Poplar duo beams, Populus x euramericana (Dode) Guinier cv. I-214, with fibre reinforcement. Constr. Build. Mater. 2012, 36, 90–96. [Google Scholar] [CrossRef]
- Müller, C. Holzleimbau. Laminated Timber Construction; Birkhäuser: Berlin, Germany, 2000. [Google Scholar]
- Martin, Z.A.; Tingley, D.A. Fire Resistance of FRP Reinforced Glulam Beams. In Proceedings of the World Conference on Timber Engineering, Whistler, BC, Canada, July 31–August 3 2000. [Google Scholar]
- Council, N.R. Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; CNR-DT 201/2005 Timber Structures; Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2007. [Google Scholar]
- Zigler, R.; Pokorny, M. Fire protection of timber structures strengthened with FRP materials. Civ. Eng. J. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Theakston, F.H. A Feasibility Study for Strengthening Timber Beams with Fibreglass. Can. Agric. Eng. 1965, 7, 17–19. [Google Scholar]
- Bulleit, W.M. Reinforcement of wood materials: A review. Wood Fiber Sci. 1983, 16, 391–397. [Google Scholar]
- Rowlands, R.E.; Van Deweghe, R.P.; Laufenberg, T.L.; Krueger, G.P. Fibre-reinforced wood composites. Wood Fiber sci. 1986, 18, 39–57. [Google Scholar]
- Triantafillou, T.C.; Deskovic, N. Prestressed FRP sheets as external reinforcement of wood members. J. Mater. Civ. Eng. 1992, 118, 1270–1284. [Google Scholar] [CrossRef]
- Dagher, H.J.; Kimball, T.E.; Shaler, S.M.; Abdel-Magid, B. Effect of FRP Reinforcement on Low Grade Eastern Hemlock Glulam. National. General Technical Report No. FPL-GTR-96. In Proceedings of the National Conference on Wood Transportation Structures, Madison, WI, USA, 23–25 Octobar 1996; pp. 207–214. [Google Scholar]
- Tingley, D.A. The Stress-Strain Relationships in Wood and Fibre-Reinforced Plastic Laminae of Reinforced Glued-Laminated Wood Beams. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1996. [Google Scholar]
- Johns, K.C.; Lacroix, S. Composite reinforcement of timber in bending. Can. J. Civ. Eng. 2000, 27, 899–906. [Google Scholar] [CrossRef]
- Fiorelli, J.; Alves Dias, A. Analysis of the Strength and Stiffness of Timber Beams Reinforced with Carbon Fibre and Glass Fibre. Mater. Res. 2003, 6, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Rescalvo, F.J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental and analytical analysis for bending load capacity of old timber beams with defects when reinforced with carbon fibre strips. Materials 2018, 186, 29–38. [Google Scholar]
- Parvez, A.; Ansell, M.; Smedley, D. Mechanical repair of timber beams fractured in flexure using bonded-in reinforcements. Compos. Part B 2009, 40, 95–106. [Google Scholar]
- Avent, R.; Issa, C.A. Effect of fire on epoxy-repaired timber. J. Struct. Eng. 1984, 110, 2858–2875. [Google Scholar] [CrossRef]
- Kliger, R.; Haghani, R.; Brunner, M.; Harte, A.; Schober, K.U. Wood-based beams strengthened with FRP laminates: Improved performance with pre-stressed systems. Eur. J. Wood Wood Prod. 2016, 74, 319–330. [Google Scholar] [CrossRef]
- Rescalvo, F.J.; Valverde-Palacios, I.; Suarez, E.; Gallego, A. Experimental Comparison of Different Carbon Fibre Composites in Reinforcement Layouts for Wooden Beams of Historical Buildings. Materials 2017, 10, 1113–1135. [Google Scholar] [CrossRef] [Green Version]
- Raftery, G.M.; Harte, A.M. Low-grade glued laminated timber reinforced with FRP plate. Compos. Part B 2011, 42, 724–735. [Google Scholar] [CrossRef]
- Fiorelli, J.; Alves Dias, A. Glulam beams reinforced with FRP externally bonded: Theoretical and experimental evaluation. Mater. Struct. 2011, 44, 1431–1440. [Google Scholar] [CrossRef]
- Raftery, G.; Whelan, C. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Constr. Build. Mater. 2014, 52, 209–220. [Google Scholar] [CrossRef]
- Gentile, C.; Svecova, D.; Rizkalla, S.H. Timber beams strengthened with GFRP bars: Development and applications. J. Compos. Constr. 2002, 6, 11–20. [Google Scholar] [CrossRef]
- Nadir, Y.; Nagarajan, P.; Ameen, M.; Arif, M. Flexural Stiffness and Strength Enhancement of Horizontally Glued Laminated Wood Beams with GFRP and CFRP Composite Sheets. Constr. Build. Mater. 2016, 112, 547–555. [Google Scholar] [CrossRef]
- Ribeiro, A.; De Jesús, A.; Lima, A.; Lousada, J. Study of strengthening solutions for glued-laminated wood beams of pine wood maritime. Constr. Build. Mater. 2009, 23, 2738–2745. [Google Scholar] [CrossRef]
- UNE-EN 56544:2011. Visual Grading for Structural Sawn Timber. Coniferous Timber; Asociación Española de Normalización: Madrid, Spain, 2011. [Google Scholar]
- UNE-EN 13183-2:2002. Moisture Content of a Piece of Sawn Timber. Part 2: Estimation by Electrical Resistance Method; Asociación Española de Normalización: Madrid, Spain, 2002. [Google Scholar]
- UNE-EN 384:2016 +A1:2019. Structural timber—Determination of Characteristic Values of Mechanical Properties and Density; Asociación Española de Normalización: Madrid, Spain, 2019. [Google Scholar]
- UNE-EN 408:2011+A1:2012. Timber structures–Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties; Asociación Española de Normalización: Madrid, Spain, 2012. [Google Scholar]
- ISO 13061-6:2014. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 6: Determination of Ultimate Tensile Stress Parallel to Grain; International Organization for Standardization (ISO): Genéve, Switzerland, 2014. [Google Scholar]
- UNE 56535:1977. Características Físico-Mecánicas de la Madera. Determinación de la Resistencia a Compression Axial; Asociación Española de Normalización: Madrid, Spain, 1977. [Google Scholar]
- García-Iruela, A.; Esteban, L.; De Palacios, P.; García-Fernández, F.; De Miguel, A.; Vázquez, E.; Simón, C. Resinous Wood of Pinus pinaster Ait.; Physio-mechanical properties. BioResources 2016, 11, 5230–5241. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Nunes, L.; Pereira, H. Properties of furfurylated wood (Pinus pinaster). Eur. J. Wood Prod. 2011, 69, 521–525. [Google Scholar] [CrossRef]
- ISO 527-5:2009. Plastics. Determination of Tensile Properties. Part 5: Test Conditions for Unidirectional Fibre-Reinforced Plastic Composites; International Organization for Standardization (ISO): Genéve, Switzerland, 2009. [Google Scholar]
- Basterra, L.A.; Balmori, J.A.; Morillas, L.; Acuña, L.; Casado, M. Internal reinforcement of laminated duo beams of low-grade timber with GFRP sheets. Constr. Build. Mater. 2017, 154, 914–920. [Google Scholar] [CrossRef]
- ISO 6238:2018. Adhesives. Wood to Wood Adhesive Bonds. Determination of Shear Strength by Compressive Loading; International Organization for Standardization (ISO): Genéve, Switzerland, 2018. [Google Scholar]
- ISO 4624:2016. Paints and Varnishes. Pull-Off Test for Adhesion; International Organization for Standardization (ISO): Genéve, Switzerland, 2016. [Google Scholar]
- UNE-EN 13183-1:2019. Moisture Content of a Piece of Sawn Timber. Part 1: Determination by Oven Dry Method; Asociación Española de Normalización: Madrid, Spain, 2019. [Google Scholar]
- Franke, A.; Franke, B.; Harte, A.M. Failure modes and reinforcement techniques for timber beams—State of the art. Mater. Struct. 2015, 97, 2–13. [Google Scholar] [CrossRef]
- Bazan, I. Ultimate Bending Strength of Timber Beams. Ph.D. Thesis, Nova Scotia Technical College, Halifax, NS, Canada, 1980. [Google Scholar]
- Buchanan, A.H. Bending strength of lumber. J. Struct. Eng. 1990, 116, 1213–1229. [Google Scholar] [CrossRef]
- Corradi, M.; Thuc, P.; Poologanathan, K.; Osofero, A. Flexural behavior of hardwood and softwood beams with mechanically GFRP plates. Compos. Struct. 2018, 206, 610–620. [Google Scholar] [CrossRef] [Green Version]
Property | Mean Value | 5th Perc. Value | Standard |
---|---|---|---|
Moisture content (%) | 11.25 (7.63%) | 9.58 | EN 13183-2:2002 [45] |
Density (kg/m3) | 510 (16.85%) | 480 | EN 384:2016 [46] |
Young’s modulus–MOE (MPa) | 10,689 (14.70%) | 7631 | EN 408:2011 [47] |
Rupture modulus–MOR (MPa) | 54.75 (25.41%) | 30.13 | EN 408:2011 [47] |
Tension parallel (MPa) | 71.04 (11.34%) | 63.32 | ISO 13061-6:2014 [48] |
Compression parallel (MPa) | 42.50 (10.43%) | 36.24 | UNE 56535:1977 [49] |
Property | Mean Value | Standard |
---|---|---|
Shear strength (Mpa) | 19 | DIN 53483:1969 |
Compressive strength (Mpa) | 80 | ASTM C579:2018 |
Tensile strength (Mpa) | 31 | ISO 527:2012 |
Bending Modulus of elasticity (Mpa) | 2000 | ISO 178:2011 |
Description | No. | Experimental Ultimate Load Fult (kN) Mean ± SD | Theoretical Ultimate Deflection (mm) | Experimental Ultimate Deflection (mm) Mean ± SD |
---|---|---|---|---|
Unreinforced duo beam | 30 | 28.83 ± 7.34 | 41.59 | 44.55 ± 11.48 |
Reinforced duo beam (UNI-1200 GFRP sheet) | 30 | 33.18 ± 8.36 | 48.48 | 55.43 ± 12.49 |
Description | No. | Theoretical EI (kN·m2) | Experimental EI (kN·m2) Mean ± SD | Improvement (%) | CoV (%) |
---|---|---|---|---|---|
Unreinforced duo beam | 30 | 195.53 | 195.53 ± 29.26 a | — | 14.97 |
Reinforced duo beam (UNI-1200 GFRP sheet) | 30 | 198.21 | 211.91 ± 17.30 b | 8.37 | 8.16 |
Description | No. | Theoretical Mult (kN·m) | Experimental Mult (kN·m) Mean ± SD | Improvement (%) | CoV (%) |
---|---|---|---|---|---|
Unreinforced duo beam | 30 | 10.73 | 14.31 ± 3.70 a | — | 25.88 |
Reinforced duo beam (UNI-1200 GFRP sheet) | 30 | 10.96 | 16.95 ± 2.66 b | 18.45 | 15.96 |
Group | No. | Mean Value | Levene Test Homoscedasticity | p-value Comparison Groups | |
---|---|---|---|---|---|
EI (kN·m2) | Control | 30 | 195.53 a | 0.0159 | 0.0157 (Welch) |
Reinforced | 30 | 211.91 b | |||
Mult (kN·m) | Control | 30 | 14.31 A | 0.219 | 0.005 (t test) |
Reinforced | 30 | 16.95 B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmori, J.-A.; Basterra, L.-A.; Acuña, L. Internal GFRP Reinforcement of Low-Grade Maritime Pine Duo Timber Beams. Materials 2020, 13, 571. https://doi.org/10.3390/ma13030571
Balmori J-A, Basterra L-A, Acuña L. Internal GFRP Reinforcement of Low-Grade Maritime Pine Duo Timber Beams. Materials. 2020; 13(3):571. https://doi.org/10.3390/ma13030571
Chicago/Turabian StyleBalmori, Jose-Antonio, Luis-Alfonso Basterra, and Luis Acuña. 2020. "Internal GFRP Reinforcement of Low-Grade Maritime Pine Duo Timber Beams" Materials 13, no. 3: 571. https://doi.org/10.3390/ma13030571