Porosity Reducing Processing Stages of Additive Manufactured Molding (AMM) for Closed-Mold Composite Fabrication
Abstract
1. Introduction
2. Materials and Methods
2.1. Vessel Design and Testing
2.1.1. Additive Manufacturing of Pressure Vessels
2.1.2. Leak Testing Procedure
2.2. Mold Design and Testing
2.2.1. Additive Manufacturing of Mold/Tooling
2.2.2. Mold Post-Processing
2.3. Composite Design and Testing
2.3.1. Manufacturing of Fiber-Reinforced Composites
2.3.2. Non-Destructive and Destructive Evaluation
3. Results and Discussion
3.1. Simulation Results
3.2. Pressure Vessel Results
3.3. Mold Results
3.4. Composite Results
3.4.1. Composite Processing
3.4.2. Non-Destructive Results
3.4.3. Destructive Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Composites Market Global Forecast to 2024|MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/composite-market-200051282.html (accessed on 17 April 2020).
- Centea, T.; Grunenfelder, L.K.; Nutt, S.R. A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations. Compos. Part Appl. Sci. Manuf. 2015, 70, 132–154. [Google Scholar] [CrossRef]
- Harshe, R. A Review on Advanced Out-of-Autoclave Composites Processing. J. Indian Inst. Sci. 2015, 95, 207–220. [Google Scholar]
- Zhakeyev, A.; Wang, P.; Zhang, L.; Shu, W.; Wang, H.; Xuan, J. Additive Manufacturing: Unlocking the Evolution of Energy Materials. Adv. Sci. 2017, 4, 1700187. [Google Scholar] [CrossRef]
- Large-Scale 3D Printing Supports Innovation in Construction, (n.d.). Available online: https://www.additivemanufacturing.media/blog/post/large-scale-3d-printing-supports-innovation-in-construction (accessed on 5 December 2018).
- Periard, D. Printing Embedded Circuits. Available online: http://utw10945.utweb.utexas.edu/Manuscripts/2007/2007-43-Periard.pdf (accessed on 15 October 2018).
- Asprone, D.; Auricchio, F.; Menna, C.; Mercuri, V. 3D printing of reinforced concrete elements: Technology and design approach. Constr. Build. Mater. 2018, 165, 218–231. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Ni, Y.; Ji, R.; Long, K.; Bu, T.; Chen, K.; Zhuang, S. A review of 3D-printed sensors. Appl. Spectrosc. Rev. 2017, 52, 623–652. [Google Scholar] [CrossRef]
- Nayak, A.; Jain, P.K. Additive Manufacturing in Civil Engineering. Civ. Eng. Res. J. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Lušić, M.; Schneider, K.; Hornfeck, R. A Case Study on the Capability of Rapid Tooling Thermoplastic Laminating Moulds for Manufacturing of CFRP Components in Autoclaves. Procedia CIRP 2016, 50, 390–395. [Google Scholar] [CrossRef]
- Türk, D.-A.; Ebnöther, A.; Zogg, M.; Meboldt, M. Additive Manufacturing of Structural Cores and Washout Tooling for Autoclave Curing of Hybrid Composite Structures. J. Manuf. Sci. Eng. 2018, 140, 105001. [Google Scholar] [CrossRef]
- Kunc, V.; Lindahl, J.; Dinwiddie, R.; Post, B.; Love, L.; Matlack, M.; Fahey, R.L., Jr.; Hassen, A.A. Investigation of In-autoclave Additive Manufacturing Composite Tooling. In Proceedings of the CAMX Conference, Anaheim, CA, USA, 26–29 September 2020; Available online: https://www.ornl.gov/publication/investigation-autoclave-additive-manufacturing-composite-tooling (accessed on 20 October 2020).
- Hassen, A.A.; Lindahl, J.; Chen, X.; Post, B.; Love, L.; Kunc, V. Additive Manufacturing of Composite Tooling Using High Temperature Thermoplastic Materials. Available online: https://www.researchgate.net/profile/Ahmed_Arabi_Hassen/publication/324442073_ADDITIVE_MANUFACTURING_OF_COMPOSITE_TOOLING_USING_HIGH_TEMPERATURE_THERMOPLASTIC_MATERIALS/links/5acdfa790f7e9b18965745f7/ADDITIVE-MANUFACTURING-OF-COMPOSITE-TOOLING-USING-HIGH-TEMPERATURE-THERMOPLASTIC-MATERIALS.pdf (accessed on 19 February 2019).
- Stratasys. Composite Tooling with FDM 3D Printing. Available online: https://www.stratasys.com/tooling/composite-tooling (accessed on 20 September 2018).
- Arafath, A.R.A.; Vaziri, R.; Poursartip, A. Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: Part II—Curved geometries. Compos. Part Appl. Sci. Manuf. 2009, 40, 1545–1557. [Google Scholar] [CrossRef]
- Ryan, I.; Christopher, W. Design and manufacture of a Formula SAE intake system using fused deposition modeling and fiber-reinforced composite materials. Rapid Prototyp. J. 2010, 16, 174–179. [Google Scholar]
- Jonsson, M.; Nordin, O.; Kron, A.L.; Malmström, E. Thermally expandable microspheres with excellent expansion characteristics at high temperature. J. Appl. Polym. Sci. 2010, 117, 384–392. [Google Scholar] [CrossRef]
- Pommer, C.; Sinapius, M. A Novel Approach to Monitoring the Curing of Epoxy in Closed Tools by Use of Ultrasonic Spectroscopy. Sensors 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Ning, F.; Cong, W.; Hu, Z.; Huang, K. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements. J. Compos. Mater. 2017, 51, 3733–3742. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Hu, Y.; Wang, H. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J. Compos. Mater. 2017, 51, 451–462. [Google Scholar] [CrossRef]
- Gordeev, E.G.; Galushko, A.S.; Ananikov, V.P. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE 2018, 13, e0198370. [Google Scholar] [CrossRef]
- Balani, S.B.; Chabert, F.; Nassiet, V.; Cantarel, A. Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 2019, 25, 112–121. [Google Scholar] [CrossRef]
- Casavola, C.; Cazzato, A.; Moramarco, V.; Pappalettera, G. Residual stress measurement in Fused Deposition Modelling parts. Polym. Test. 2017, 58, 249–255. [Google Scholar] [CrossRef]
- Villalpando, L.; Eiliat, H.; Urbanic, R.J. An Optimization Approach for Components Built by Fused Deposition Modeling with Parametric Internal Structures. Procedia CIRP 2014, 17, 800–805. [Google Scholar] [CrossRef]
- Erokhin, K.S.; Gordeev, E.G.; Ananikov, V.P. Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Spencer, J.; Cobb, R.; Dickens, P. Vibratory Finishing of Stereolithography Parts. Available online: https://repositories.lib.utexas.edu/bitstream/handle/2152/65034/1993-03-Spencer.pdf?sequence=2&isAllowed=y (accessed on 14 December 2017).
- Ramos, L.P.; Uddin, N.; Al-Hamdan, A.; Kirby, J.; Salama, T.; Waldron, C. Development of Vacuum Assisted Resin Transfer Molding (VARTM) Method for the Repair and Strengthening of Concrete Structures. Available online: https://search.proquest.com/docview/1366759300?pq-origsite=gscholar&fromopenview=true (accessed on 27 February 2019).
- Stark, M.S. Improving and Understanding Inter-Filament Bonding in 3D-Printed Polymers. Available online: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=3021&context=utk_chanhonoproj (accessed on 25 February 2019).
- Kariz, M.; Kuzman, M.K.; Sernek, M. Adhesive bonding of 3D-printed ABS parts and wood. J. Adhes. Sci. Technol. 2017, 31, 1683–1690. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials 2015, 8, 5834–5846. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, C.; Olmsted, P.D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 2017, 123, 376–391. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Garg, A.; Bhattacharya, A.; Batish, A. Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength. Int. J. Adv. Manuf. Technol. 2017, 89, 2175–2191. [Google Scholar] [CrossRef]
- Chohan, J.S.; Singh, R.; Boparai, K.S.; Penna, R.; Fraternali, F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos. Part B Eng. 2017, 117, 138–149. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Singh, I.P.; Fabbrocino, F.; Fraternali, F. Investigation for surface finish improvement of FDM parts by vapor smoothing process. Compos. Part B Eng. 2017, 111, 228–234. [Google Scholar] [CrossRef]
- Lalehpour, A.; Barari, A. Post processing for Fused Deposition Modeling Parts with Acetone Vapour Bath. IFAC-PapersOnLine 2016, 49, 42–48. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2017; Available online: www.astm.org (accessed on 20 October 2020).
Input | Layer Height (mm) | 0.15 | 0.40 | ||||
---|---|---|---|---|---|---|---|
Wall Thickness (mm) | 1 | 3 | 6 | 1 | 3 | 6 | |
Output | Number of Layers | 501 | 514 | 534 | 187 | 192 | 200 |
Printing Time (minutes) | 103 | 113 | 152 | 39 | 43 | 57 | |
Internal volume (cm3) | 17,809.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollard, M.; Tran, P.; Dickens, T. Porosity Reducing Processing Stages of Additive Manufactured Molding (AMM) for Closed-Mold Composite Fabrication. Materials 2020, 13, 5328. https://doi.org/10.3390/ma13235328
Pollard M, Tran P, Dickens T. Porosity Reducing Processing Stages of Additive Manufactured Molding (AMM) for Closed-Mold Composite Fabrication. Materials. 2020; 13(23):5328. https://doi.org/10.3390/ma13235328
Chicago/Turabian StylePollard, Marquese, Phong Tran, and Tarik Dickens. 2020. "Porosity Reducing Processing Stages of Additive Manufactured Molding (AMM) for Closed-Mold Composite Fabrication" Materials 13, no. 23: 5328. https://doi.org/10.3390/ma13235328
APA StylePollard, M., Tran, P., & Dickens, T. (2020). Porosity Reducing Processing Stages of Additive Manufactured Molding (AMM) for Closed-Mold Composite Fabrication. Materials, 13(23), 5328. https://doi.org/10.3390/ma13235328