Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent
Abstract
1. Introduction
2. Experimental
2.1. Chemicals
2.1.1. Synthesis of CdS on Fluorine Doped tin Oxide (FTO) Glass
2.1.2. Synthesis of AIE Materials (TPE-Ca)
2.1.3. Preparation of CdS/TPE-Ca Electrode
2.2. Characterization
3. Results and Discussions
3.1. Crystal Structure of CdS/TPE-Ca
3.2. Optical Features
3.3. Photoelectrochemical Cell
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting. Adv. Mater. 2019, 31, e1807134. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, C.; Shen, J.; Zhong, Y.; Ning, J.; Hu, Y. One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles: A high-efficiency electrocatalyst for hydrogen generation. J. Colloid Interface 2020, 558, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, X.; Zalnezhad, E.; Hui, K.S.; Ko, M.J. 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. J. Ind. Eng. Chem. 2020, 82, 309–316. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Tan, L.; Ma, H.; Pang, H.; Wang, X.; Zhang, L. Metal–Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 42621–42629. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.H. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Adv. Sci. 2017, 5, 1700270. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Singh, G.; Cha, W.; Kim, S.; Yi, J.; Hwang, S.-J.; Vinu, A. Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Lett. 2020, 5, 1939–1966. [Google Scholar] [CrossRef]
- Li, C.; Cao, Q.; Wang, F.; Xiao, Y.; Li, Y.; Delaunay, J.-J.; Zhu, H. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981–5037. [Google Scholar] [CrossRef]
- Hao, H.; Lang, X. Metal Sulfide Photocatalysis: Visible-Light-Induced Organic Transformations. ChemCatChem 2019, 11, 1378–1393. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Li, L.; Lv, C.; Zatovsky, I.V.; Han, W. Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy. ACS Appl. Mater. Interfaces 2019, 11, 8072–8080. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D.; Zheng, D.; Wang, G.; Huang, X.; Harris, J.; Qu, D.; Qu, D. Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J. Mater. Chem. A 2018, 6, 13294–13301. [Google Scholar] [CrossRef]
- Yadav, P.; Dwivedi, P.K.; Tonda, S.; Boukherroub, R.; Shelke, M.V. Metal and Non-metal Doped Metal Oxides and Sulfides. Pollut. Build. Water Living Org. 2019, 89–132. [Google Scholar] [CrossRef]
- Kisch, H.; Hetterich, W.; Twardzik, G. Heterogeneous Photocatalysis by Metal Sulfide Semiconductors. In Photochemistry and Photophysics of Coordination Compounds; Springer: Berlin, Germany, 1987; pp. 301–306. [Google Scholar]
- Mohammed, M.K.A. Studying the Structural, Morphological, Optical, and Electrical Properties of CdS/PbS Thin Films for Photovoltaic Applications. Plasmonics 2020, 15, 1989–1996. [Google Scholar] [CrossRef]
- Zhang, P.; Guan, B.Y.; Yu, L.; Lou, X.W. (David) Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. Chem 2018, 4, 162–173. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jang, Y.J.; Park, J.; Kim, J.; Kang, J.S.; Chung, D.Y.; Sung, Y.-E.; Lee, C.; Lee, J.; Ko, M.J. Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion. Appl. Catal. B Environ. 2018, 227, 409–417. [Google Scholar] [CrossRef]
- Li, J.-Y.; Li, Y.-H.; Qi, M.-Y.; Lin, Q.; Tang, Z.-R.; Xu, Y.-J. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal. 2020, 10, 6262–6280. [Google Scholar] [CrossRef]
- Zheng, X.; Quan, H.; Chen, Z.; Shao, Y.; Zheng, X. New insight into an efficient visible light-driven photocatalytic organic transformation over CdS/TiO2 photocatalysts. Photochem. Photobiol. Sci. 2018, 17, 51–59. [Google Scholar] [CrossRef]
- Wu, H.; Kang, Z.; Zhang, Z.; Zhang, Z.; Si, H.; Liao, Q.; Zhang, S.; Wu, J.; Zhang, X.; Zhang, Y. Interfacial Charge Behavior Modulation in Perovskite Quantum Dot-Monolayer MoS2 0D-2D Mixed-Dimensional van der Waals Heterostructures. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef]
- Khan, U.A.; Liu, J.; Pan, J.; Ma, H.; Zuo, S.; Yu, Y.; Ahmad, A.; Ullah, S.; Li, B. Fabrication of Highly Efficient and Hierarchical CdS QDs/CQDs/H-TiO2 Ternary Heterojunction: Surpassable Photocatalysis under Sun-like Illumination. Ind. Eng. Chem. Res. 2018, 58, 79–91. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, S.; Zhang, X.; Liu, B.; Tang, N. Highly efficient visible-light-induced photoactivity of the CdS–Mn/MoS2/CdTe/TiO2 quaternary photocatalyst for label-free immunoassay of tris-(2,3-dibromopropyl) isocyanurate and enhanced solar hydrogen generation. Anal. Methods 2018, 10, 3462–3469. [Google Scholar] [CrossRef]
- Sharma, S.; Dutta, V.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P.; Nguyen, V.-H. Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: A review. Environ. Chem. Lett. 2020, 1–36. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, S.; Zhang, J.; Zhou, T.; Zhang, N.; Zheng, X.-S.; Chu, W.; Hu, Z.; Wu, C.; Xie, Y. Surface Nitrogen-Injection Engineering for High Formation Rate of CO2 Reduction to Formate. Nano Lett. 2020, 20, 6097–6103. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.M.; Takayama, T.; Sato, S.; Iwase, A.; Kudo, A.; Morikawa, T. Enhancement of CO2 reduction activity under visible light irradiation over Zn-based metal sulfides by combination with Ru-complex catalysts. Appl. Catal. B Environ. 2018, 224, 572–578. [Google Scholar] [CrossRef]
- John, J.; Lee, D.-K.; Sim, U. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Converg. 2019, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-Z.; Shang, X.; Dong, B.; Chai, Y.-M. Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. J. Catal. 2018, 361, 204–213. [Google Scholar] [CrossRef]
- Landers, A.T.; Fields, M.; Torelli, D.A.; Xiao, J.; Hellstern, T.R.; Francis, S.A.; Tsai, C.; Kibsgaard, J.; Lewis, N.S.; Chan, K.; et al. The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions: An Experimental and Theoretical Study. ACS Energy Lett. 2018, 3, 1450–1457. [Google Scholar] [CrossRef]
- Aslan, E.; Sarilmaz, A.; Ozel, F.; Patir, I.H.; Girault, H.H. 1D Amorphous Tungsten-Based Ternary Refractory Metal Sulfides for Catalytic Hydrogen Evolution at Soft Interfaces. ChemNanoMat 2019, 5, 1461–1466. [Google Scholar] [CrossRef]
- Li, Y.; Niu, S.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S.; Song, B.; Xu, P. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 2018, 10, 7291–7297. [Google Scholar] [CrossRef]
- Yua, J.; Gao, X.; Cui, Z.; Jiao, Y.; Zhang, Q.; Dong, H.; Yu, L.; Dong, L. Facile Synthesis of Binary Transition Metal Sulfide Tubes Derived from NiCo-MOF-74 for High-Performance Supercapacitors. Energy Technol. 2019, 7. [Google Scholar] [CrossRef]
- Yi, M.; Zhang, C.; Cao, C.; Xu, C.; Sa, B.; Cai, D.; Zhan, H. MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni–Co–S Nanoparticles for Supercapacitors and Lithium Ion Batteries. Inorg. Chem. 2019, 58, 3916–3924. [Google Scholar] [CrossRef]
- Nijamudheen, A.; Akimov, A.V. Criticality of Symmetry in Rational Design of Chalcogenide Perovskites. J. Phys. Chem. Lett. 2017, 9, 248–257. [Google Scholar] [CrossRef]
- Niu, S.; Milam-Guerrero, J.; Zhou, Y.; Ye, K.; Zhao, B.; Melot, B.C.; Ravichandran, J. Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 2018, 33, 4135–4143. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Zhang, L.; Li, H.; Liu, H.; Li, W. Transition metal-doped amorphous molybdenum sulfide/graphene ternary cocatalysts for excellent photocatalytic hydrogen evolution: Synergistic effect of transition metal and graphene. J. Colloid Interface Sci. 2019, 533, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Kim, K.M.; Choi, H.; Ali, G.; Chung, K.-Y.; Hong, Y.-R.; Choi, J.; Kwon, J.; Lee, S.W.; Lee, J.W.; et al. Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide–Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catal. 2018, 8, 4091–4102. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Y.; Zhu, G.; Li, B.; Gou, J.; Cheng, X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Sep. Purif. Technol. 2019, 227, 115697. [Google Scholar] [CrossRef]
- Yang, T.; Huang, Y.; Yang, L.; Li, X.; Wang, X.; Zhang, G.; Luo, Y.; Jiang, J. Protecting Single Atom Catalysts with Graphene/Carbon-Nitride “Chainmail”. J. Phys. Chem. Lett. 2019, 10, 3129–3133. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Kang, M.; Islam, M.; Chen, M.; Zhang, J.; Xiao, Y.; Feng, X.; Redshaw, C.; Zhang, M.; et al. Aggregation-induced emission luminogen: A new perspective in the photo-degradation of organic pollutants. EcoMat 2020, 2. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, M. 3 Dimensional ordered macroporous FTO electrode decorated with CdxZn1−xS photocatalyst for improved photocurrent generation. Mater. Lett. 2018, 212, 307–310. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, W.; Leung, N.L.C.; Arseneault, M.; Lam, J.W.Y.; Liang, G.; Sung, H.H.-Y.; Williams, I.D.; Tang, B.Z. A mechanistic study of AIE processes of TPE luminogens: Intramolecular rotation vs. configurational isomerization. J. Mater. Chem. C 2016, 4, 99–107. [Google Scholar] [CrossRef]
- Ho, T.A.; Bae, C.; Joe, J.; Yang, H.; Kim, S.; Park, J.H.; Shin, H. Heterojunction Photoanode of Atomic-Layer-Deposited MoS2 on Single-Crystalline CdS Nanorod Arrays. ACS Appl. Mater. Interfaces 2019, 11, 37586–37594. [Google Scholar] [CrossRef]
- Jones, D.R.; Phillips, R.; Gannon, W.J.F.; Rome, B.; Warwick, M.E.A.; Dunnill, C.W. Photocapacitive CdS/WOx nanostructures for solar energy storage. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Joshi, A.U.A.; Lee, J.S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111, 13280–13287. [Google Scholar] [CrossRef]
- Macdonald, J. Impedance Spectroscopy. Encycl. Phys. Sci. Technol. 2003, 20, 703–715. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, H.; He, P.-G.; Fang, Y.-Z. Probing DNA Hybridization by Impedance Measurement Based on CdS-Oligonucleotide Nanoconjugates. Electroanalysis 2004, 16, 150–155. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, X.; Wang, K.; Tu, C.; Huang, R.; Luo, D.; Zhang, M. Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent. Materials 2020, 13, 5287. https://doi.org/10.3390/ma13225287
Ke X, Wang K, Tu C, Huang R, Luo D, Zhang M. Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent. Materials. 2020; 13(22):5287. https://doi.org/10.3390/ma13225287
Chicago/Turabian StyleKe, Xi, Kunqiang Wang, Chen Tu, Runda Huang, Dongxiang Luo, and Menglong Zhang. 2020. "Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent" Materials 13, no. 22: 5287. https://doi.org/10.3390/ma13225287
APA StyleKe, X., Wang, K., Tu, C., Huang, R., Luo, D., & Zhang, M. (2020). Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent. Materials, 13(22), 5287. https://doi.org/10.3390/ma13225287