Simulation of Bullet Fragmentation and Penetration in Granular Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Ballistic Blocks
2.2. Ballistic Workbench
2.3. Numerical Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keneubuehl, B.P.; Coupland, R.M.; Rothschild, M.A. Wound Ballistics: Basic and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Andreotti, B.; Forterre, Y.; Pouliquen, O. Granular Media: Between Fluid and Solid; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Gillis, C.S. Ballistics-Resistant Fabrications. U.S. Patent US20120167754A1, 5 July 2012. [Google Scholar]
- Holmen, J.K.; Johnsen, J.; Jupp, S.; Hopperstad, O.S.; Børvik, T. Effects of Heat Treatment on the Ballistic Properties of AA6070 Aluminium Alloy. Int. J. Impact Eng. 2013, 57, 119–133. [Google Scholar] [CrossRef]
- Børvik, T.; Dey, S.; Olovsson, L. Penetration of Granular Materials by Small-Arms Bullets. Int. J. Impact Eng. 2015, 75, 123–139. [Google Scholar] [CrossRef]
- Gomez, J.T.; Shukla, A. Multiple Impact Penetration of Semi-Infinite Concrete. Int. J. Impact Eng. 2001, 25, 965–979. [Google Scholar] [CrossRef]
- Kılıç, N.; Bedir, S.; Erdik, A.; Ekici, B.; Taşdemirci, A.; Güden, M. Ballistic Behavior of High Hardness Perforated Armor Plates against 7.62mm Armor Piercing Projectile. Mater. Des. 2014, 63, 427–438. [Google Scholar] [CrossRef]
- Manes, A.; Serpellini, F.; Pagani, M.; Saponara, M.; Giglio, M. Perforation and Penetration of Aluminium Target Plates by Armour Piercing Bullets. Int. J. Impact Eng. 2014, 69, 39–54. [Google Scholar] [CrossRef]
- Cole, R.P. Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes; Proquest, Umi Dissertation Publishing: Charleston, SC, USA, 2011. [Google Scholar]
- Lohse, D.; Bergmann, R.; Mikkelsen, R.; Zeilstra, C.; van der Meer, D.; Versluis, M.; van der Weele, K.; van der Hoef, M.; Kuipers, H. Impact on Soft Sand: Void Collapse and Jet Formation. Phys. Rev. Lett. 2004, 93, 198003. [Google Scholar] [CrossRef]
- Ding, T.; Xiao, J.; Zou, S.; Wang, Y. Hardened Properties of Layered 3D Printed Concrete with Recycled Sand. Cem. Concr. Compos. 2020, 113, 103724. [Google Scholar] [CrossRef]
- Sldozian, R.J.; Tkachev, A.G.; Burakova, I.V.; Mikhaleva, Z.A. Improve the Mechanical Properties of Lightweight Foamed Concrete by Using Nanomodified Sand. J. Build. Eng. 2020, 101923. [Google Scholar] [CrossRef]
- Pilegis, M.; Gardner, D.; Lark, R. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete. Materials 2016, 9, 440. [Google Scholar] [CrossRef]
- Natarajan, S.; Pillai, N.N.; Murugan, S. Experimental Investigations on the Properties of Epoxy-Resin-Bonded Cement Concrete Containing Sea Sand for Use in Unreinforced Concrete Applications. Materials 2019, 12, 645. [Google Scholar] [CrossRef]
- Ling, Y.-F.; Zhang, P.; Wang, J.; Shi, Y. Effect of Sand Size on Mechanical Performance of Cement-Based Composite Containing PVA Fibers and Nano-SiO2. Materials 2020, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Moxnes, J.F.; Frøyland, Ø.; Skriudalen, S.; Prytz, A.K.; Teland, J.A.; Friis, E.; Ødegårdstuen, G. On the Study of Ricochet and Penetration in Sand, Water and Gelatin by Spheres, 7.62 Mm APM2, and 25 Mm Projectiles. Def. Technol. 2016, 12, 159–170. [Google Scholar] [CrossRef]
- Savvateev, A.F.; Budin, A.V.; Kolikov, V.A.; Rutberg, P.G. High-Speed Penetration into Sand. Int. J. Impact Eng. 2001, 26, 675–681. [Google Scholar] [CrossRef]
- Van Vooren, A.; Borg, J.; Sandusky, H.; Felts, J. Sand Penetration: A Near Nose Investigation of a Sand Penetration Event. Procedia Eng. 2013, 58, 601–607. [Google Scholar] [CrossRef]
- Ishfaq, K.; Ali, M.A.; Ahmad, N.; Zahoor, S.; Al-Ahmari, A.M.; Hafeez, F. Modelling the Mechanical Attributes (Roughness, Strength, and Hardness) of Al-Alloy A356 during Sand Casting. Materials 2020, 13, 598. [Google Scholar] [CrossRef]
- Khan, R.; Ya, H.H.; Pao, W.; Majid, M.A.A.; Ahmed, T.; Ahmad, A.; Alam, M.A.; Azeem, M.; Iftikhar, H. Effect of Sand Fines Concentration on the Erosion-Corrosion Mechanism of Carbon Steel 90° Elbow Pipe in Slug Flow. Materials 2020, 13, 4601. [Google Scholar] [CrossRef]
- Li, J.; Cui, J.; Shan, Y.; Li, Y.; Ju, B. Dynamic Shear Modulus and Damping Ratio of Sand–Rubber Mixtures under Large Strain Range. Materials 2020, 13, 4017. [Google Scholar] [CrossRef]
- Borek, K.; Czapik, P.; Dachowski, R. Recycled Glass as a Substitute for Quartz Sand in Silicate Products. Materials 2020, 13, 1030. [Google Scholar] [CrossRef]
- Guan, W.; Qi, Q.; Zhang, Z.; Nan, S. Effect of Sand Particle Size on Microstructure and Mechanical Properties of Gypsum-Cemented Similar Materials. Materials 2020, 13, 765. [Google Scholar] [CrossRef]
- Alshahrani, R.F.; Merah, N.; Khan, S.M.A.; Al-Nassar, Y. On the Impact-Induced Damage in Glass Fiber Reinforced Epoxy Pipes. Int. J. Impact Eng. 2016, 97, 57–65. [Google Scholar] [CrossRef]
- Bless, S.J.; Berry, D.T.; Pedersen, B.; Lawhorn, W.; Elert, M.; Furnish, M.D.; Anderson, W.W.; Proud, W.G.; Butler, W.T. Sand Penetration by High-Speed Projectiles; American Institute of Physics: College Park, MD, USA, 2009; pp. 1361–1364. [Google Scholar] [CrossRef]
- De Economía, S. Seguridad al Usuario-Chalecos Antibalas-Especificaciones y Métodos de Prueba NOM-166-SCFI-2005. Available online: http://www.economia-noms.gob.mx/normas/noms/2005/nom166scfi.pdf (accessed on 1 June 2020).
- Li, J.; Hunt, J.F.; Gong, S.; Cai, Z. High Strength Wood-based Sandwich Panels Reinforced with Fiberglass and Foam. Bioresources 2014, 9, 1898–1913. [Google Scholar] [CrossRef]
- Nolte, R.A.; Selke, D.L. Armored Building Modules and Panels—Installation and Removal. U.S. Patent 7,802,414 B1, 28 September 2009. [Google Scholar]
- Schaeffer, W.; Warren, D.H. Methods and Apparatus for Providing Ballistic Protection. U.S. Patent No. 7,954,415, 7 June 2011. [Google Scholar]
- Telander, W. Basalt Particle-Containing Articles for Ballistic Shield Mats/Tiles/Protective Building Components. U.S. Patent Application 11/176,872, 27 September 2007. [Google Scholar]
- Chen, X.; Liu, Y. Finite Element Modeling and Simulation with ANSYS Workbench, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Rosenberg, Z.; Dekel, E. Terminal Ballistics, 2nd ed.; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R.; Lam, K.Y. Constructing Smoothing Functions in Smoothed Particle Hydrodynamics with Applications. J. Comput. Appl. Math. 2003, 155, 263–284. [Google Scholar] [CrossRef]
- Lind, S.J.; Xu, R.; Stansby, P.K.; Rogers, B.D. Incompressible Smoothed Particle Hydrodynamics for Free-Surface Flows: A Generalised Diffusion-Based Algorithm for Stability and Validations for Impulsive Flows and Propagating Waves. J. Comput. Phys. 2012, 231, 1499–1523. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R.; Zong, Z.; Lam, K.Y. Computer Simulation of High Explosive Explosion Using Smoothed Particle Hydrodynamics Methodology. Comput. Fluids 2003, 32, 305–322. [Google Scholar] [CrossRef]
- Shadloo, M.S.; Zainali, A.; Sadek, S.H.; Yildiz, M. Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow around Bluff Bodies. Comput. Methods Appl. Mech. Eng. 2011, 200, 1008–1020. [Google Scholar] [CrossRef]
- Monaghan, J.J. A Turbulence Model for Smoothed Particle Hydrodynamics. Eur. J. Mech. B Fluids 2011, 30, 360–370. [Google Scholar] [CrossRef]
- Adami, S.; Hu, X.Y.; Adams, N.A. A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics. J. Comput. Phys. 2012, 231, 7057–7075. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R.; Lam, K.Y. Adaptive Smoothed Particle Hydrodynamics for High Strain Hydrodynamics with Material Strength. Shock. Waves 2006, 15, 21–29. [Google Scholar] [CrossRef]
- Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahdadi, F.A. High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response. J. Comput. Phys. 1993, 109, 67–75. [Google Scholar] [CrossRef]
- Johnson, G.R.; Petersen, E.H.; Stryk, R.A. Incorporation of an SPH Option into the EPIC Code for a Wide Range of High Velocity Impact Computations. Int. J. Impact Eng. 1993, 14, 385–394. [Google Scholar] [CrossRef]
- Plimpton, S.; Attaway, S.; Hendrickson, B.; Swegle, J.; Vaughan, C.; Gardner, D. Parallel Transient Dynamics Simulations: Algorithms for Contact Detection and Smoothed Particle Hydrodynamics. J. Parallel Distrib. Comput. 1998, 50, 104–122. [Google Scholar] [CrossRef][Green Version]
- Brown, K.; Attaway, S.; Plimpton, S.; Hendrickson, B. Parallel Strategies for Crash and Impact Simulations. Comput. Methods Appl. Mech. Eng. 2000, 184, 375–390. [Google Scholar] [CrossRef][Green Version]
- Stacey, F.D.; Hodgkinson, J.H. Thermodynamics with the Grüneisen Parameter: Fundamentals and Applications to High Pressure Physics and Geophysics. Phys. Earth Planet. Inter. 2019, 286, 42–68. [Google Scholar] [CrossRef]
- Allen, W.A.; Mayfield, E.B.; Morrison, H.L. Dynamics of a Projectile Penetrating Sand. J. Appl. Phys. 1957, 28, 370–376. [Google Scholar] [CrossRef]
- Ahmed, M.; AlQadhi, S.; Mallick, J.; Desmukh, M.N.; Hang, H.T. Advances in Projectile Penetration Mechanism in Soil Media. Appl. Sci. 2020, 10, 6810. [Google Scholar] [CrossRef]
- Uzar, A.İ.; Dakak, M.; Saǧlam, M.; Özer, T.; Ögunç, G.; İde, T.; Öner, K.; Sen, D. The Magazine: A Major Cause of Bullet Fragmentation. Mil. Med. 2003, 168, 969–974. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Knudsen, P.J.; Theilade, P. Terminal Ballistics of the 7.62 Mm NATO Bullet. Autopsy Findings. Int. J. Leg. Med. 1993, 106, 61–67. [Google Scholar] [CrossRef]
- Fackler, M.L.; Surinchak, J.S.; Malinowski, J.A.; Bowen, R.E. Bullet Fragmentation: A Major Cause of Tissue Disruption. J. Trauma 1984, 24, 35–39. [Google Scholar] [CrossRef]
- Borg, J.P.; Sable, P.; Sandusky, H.; Felts, J. In Situ Characterization of Projectile Penetration into Sand Targets. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2017; Volume 1793, p. 120014. [Google Scholar] [CrossRef]
Bullet Type | Weight (±0.01 g) | Energy at 15 m | Velocity at 0 m | Velocity at 15 m | Velocity at 23.77 m |
---|---|---|---|---|---|
AP M61 | 9.75 g | 3 481 J | 852 m/s | 843 m/s | 835 m/s |
FMJ M80 | 9.65 g | 3 445 J | 855 m/s | 845 m/s | 839 m/s |
Material | Media | Material | Density (kg/m3) | Shear Modulus (GPa) |
---|---|---|---|---|
Brass | Continuous | Orthotropic | 8450 | 35.9 |
Lead | Continuous | Orthotropic | 11,350 | 4 |
Steel | Continuous | Orthotropic | 7896 | 81.8 |
Sand | Granular | Anisotropic | 2641 | 76.9 |
Plywood | Continuous | Anisotropic | 680 | 0.75 |
Fiberglass | Continuous | Anisotropic | 1310 | 0.82 |
Case | Model Type–Projectile | Velocity (m/s) |
---|---|---|
1 | FSF–AP (M61) | 843 |
2 | PSP–AP (M61) | 843 |
3 | FSF–FMJ (M80) | 845 |
4 | PSP–FMJ (M80) | 845 |
Lead | Brass | Steel | Sand | Fiberglass | Plywood | |
---|---|---|---|---|---|---|
Shock EOS Linear | - | - | - | X | - | X |
Grüneisen Coefficient | 2.74 | 2.04 | 2.17 | X | 1.18 | X |
C1 (m/s) | 2006 | 3726 | 4569 | X | 2746 | X |
S1 | 1.429 | 1.434 | 1.49 | X | 1.319 | X |
Quadratic S2 (s/m) | 0 | 0 | 0 | X | 0 | X |
Specific Heat (J/kg C) | 124 | X | 447 | X | X | X |
Steinberg Giunan Strength | - | X | - | X | X | X |
MO Granular | X | X | X | - | X | X |
offset | X | X | X | 0 | X | X |
Tensile Pressure Failure | X | X | X | - | X | X |
Max. Tensile Pressure (Pa) | X | X | X | 1000 | X | X |
Compaction EOS Linear | X | X | X | - | X | X |
Solid Density (kg/m3) | X | X | X | 2641 | X | X |
Compaction Path | X | X | X | - | X | X |
Linear Unloading | X | X | X | - | X | X |
Johnson-Holmquist Strength | X | X | X | X | X | - |
Failure type | X | X | X | X | X | Gradual |
Hugoniot Elastic Limit | X | X | X | X | X | 5.92 × 109 Pa |
Intact Strength Constant A | X | X | X | X | X | 0.93 |
Intact Strength Exponent N | X | X | X | X | X | 0.77 |
Strain Rate Constant C | X | X | X | X | X | 0.003 |
Fracture Strength Constant B | X | X | X | X | X | 0.088 |
Fracture Strength Exponent m | X | X | X | X | X | 0.35 |
Max. fracture strength Ratio | X | X | X | X | X | 0.5 |
Damage constant D1 | X | X | X | X | X | 0.053 |
Damage constant D2 | X | X | X | X | X | 0.85 |
Bulking constant B | X | X | X | X | X | 1 |
Hydrodynamic Tensile Limit | X | X | X | X | X | −0.15 × 109 Pa |
Bulk Modulus | X | X | X | X | X | 45.4 × 109 Pa |
Shear Modulus | X | X | X | X | X | 15,000 MPa |
Polynomial EOS | X | X | X | X | X | - |
Case | Model Type–Projectile | Velocity (m/s) | Penetration Depth (mm) | Time (ms) | |
---|---|---|---|---|---|
Numerical | Experimental | ||||
1 | FSF–AP (FMJ) | 843 | 237.12 | 197.76 | 0.8 |
2 | PSP–AP (FMJ) | 843 | 207.41 | 200.22 | 0.8 |
3 | FSF–FMJ (M80) | 845 | 116.59 | 126.56 | 0.8 |
4 | PSP–FMJ (M80) | 845 | 115.35 | 126.07 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano-Moranchel, F.A.; Sandoval-Pineda, J.M.; Gutiérrez-Paredes, G.J.; Silva-Rivera, U.S.; Flores-Herrera, L.A. Simulation of Bullet Fragmentation and Penetration in Granular Media. Materials 2020, 13, 5243. https://doi.org/10.3390/ma13225243
Soriano-Moranchel FA, Sandoval-Pineda JM, Gutiérrez-Paredes GJ, Silva-Rivera US, Flores-Herrera LA. Simulation of Bullet Fragmentation and Penetration in Granular Media. Materials. 2020; 13(22):5243. https://doi.org/10.3390/ma13225243
Chicago/Turabian StyleSoriano-Moranchel, Froylan Alonso, Juan Manuel Sandoval-Pineda, Guadalupe Juliana Gutiérrez-Paredes, Usiel Sandino Silva-Rivera, and Luis Armando Flores-Herrera. 2020. "Simulation of Bullet Fragmentation and Penetration in Granular Media" Materials 13, no. 22: 5243. https://doi.org/10.3390/ma13225243
APA StyleSoriano-Moranchel, F. A., Sandoval-Pineda, J. M., Gutiérrez-Paredes, G. J., Silva-Rivera, U. S., & Flores-Herrera, L. A. (2020). Simulation of Bullet Fragmentation and Penetration in Granular Media. Materials, 13(22), 5243. https://doi.org/10.3390/ma13225243