Corrosion Behavior of CoCrFeNiTax Alloys in 1 M Sodium Chloride Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- The phases in as-cast CoCrFeNiTax alloys were FCC phases and HCP-structured Laves phases. Increasing levels of Ta content in these alloys resulted in increases in the amount of Laves phases. Ta0.1 and Ta0.3 alloys had hypoeutectic microstructures and the Ta0.5 alloy had a eutectic microstructure.
- The hardness of the as-cast CoCrFeNiTax alloys increased with increasing levels of Ta content. Increasing the levels of Ta content in these alloys had two effects, namely, solid solution strengthening and increasing amounts of HCP-structured Laves phases. Furthermore, the Laves phases in these alloys had higher levels of Ta content than in FCC phases. The Ta0.5 alloy had the highest hardness of 467 HV.
- Among the CoCrFeNiTax alloys, the Ta0.5 alloy had the best corrosion resistance in 1 M deaerated NaCl solution. The Ta0.5 alloy had a polarization resistance of 30.7 kΩ, the highest from among these alloys. However, the Ta0.5 alloy had the best pitting resistance in 1 M NaCl solution.
Author Contributions
Funding
Conflicts of Interest
References
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.-W.; Ranganathan, S.; Bhattacharjee, P.P. High -Entropy Alloys; Elsevier: London, UK, 2019; ISBN 9780128160671. [Google Scholar]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Senkov, O.; Wilks, G.; Scott, J.M.; Miracle, D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-Resistant High-Entropy Alloys: A Review. Metals 2017, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Wang, H.; Wu, Y.; Liu, X.; Lu, Z. Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater. Res. Lett. 2017, 5, 187–194. [Google Scholar] [CrossRef]
- Zhang, R.-Z.; Reece, M.J. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 2019, 7, 22148–22162. [Google Scholar] [CrossRef] [Green Version]
- Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309. [Google Scholar] [CrossRef]
- Qiu, Y.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion characteristics of high entropy alloys. Mater. Sci. Technol. 2015, 31, 1235–1243. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Guo, S. A thermodynamic study of corrosion behaviors for CoCrFeNi-based high-entropy alloys. J. Mater. Sci. 2018, 53, 14729–14738. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M. Thermal Spray High-Entropy Alloy Coatings: A Review. J. Spray Technol. 2020, 29, 857–893. [Google Scholar] [CrossRef]
- Wang, W.; Qi, W.; Xie, L.; Yang, X.; Li, J.; Zhang, Y. Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying. Mater. 2019, 12, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, J.; Juan, Y.; Lu, Z.; Jia, W. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding. J. Alloy. Compd. 2019, 775, 1–14. [Google Scholar] [CrossRef]
- Qiu, X.-W.; Wu, M.-J.; Liu, C.-G.; Zhang, Y.-P.; Huang, C.-X. Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. J. Alloy. Compd. 2017, 708, 353–357. [Google Scholar] [CrossRef]
- Tsau, C.-H.; Lin, S.-X.; Fang, C.-H. Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Mater. Chem. Phys. 2017, 186, 534–540. [Google Scholar] [CrossRef]
- Tsau, C.-H.; Tsai, M.-C. The Effects of Mo and Nb on the Microstructures and Properties of CrFeCoNi(Nb,Mo) Alloys. Entropy 2018, 20, 648. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.; Li, Z.; Chen, R.; Zheng, H.; Fan, C.; Wang, L.; Su, Y.; Ding, H.; Guo, J.; Fu, H. CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. J. Mater. Res. 2019, 34, 1011–1020. [Google Scholar] [CrossRef]
- Ma, H.; Shek, C. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. J. Alloy. Compd. 2020, 827, 154159. [Google Scholar] [CrossRef]
- Jiang, H.; Han, K.; Qiao, D.; Lu, Y.; Cao, Z.; Li, T. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 43–48. [Google Scholar] [CrossRef]
- Askeland, D.R.; Wright, W.J. The Science and Engineering of Materials, 7th ed.; Cengage Learning: Boston, MA, USA, 2016; pp. 833–836. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- ASTM G150-99. Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Mei, B.-A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.; Pilon, L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
Alloys | Compositions (wt.%) | ||||
---|---|---|---|---|---|
Co | Cr | Fe | Ni | Ta | |
CoCrFeNiTa0.1 (Ta0.1) | 24.2 | 21.4 | 22.9 | 24.1 | 7.4 |
CoCrFeNiTa0.3 (Ta0.3) | 21.1 | 18.6 | 20.0 | 21.0 | 19.3 |
CoCrFeNiTa0.5 (Ta0.5) | 18.7 | 16.5 | 17.7 | 18.6 | 28.5 |
Alloys | FCC | HCP | |
---|---|---|---|
a (Å) | a (Å) | c (Å) | |
Ta0.1 | 3.58 | 4.61 | 7.62 |
Ta0.3 | 3.60 | 4.61 | 7.52 |
Ta0.5 | 3.57 | 4.61 | 7.42 |
Alloys and Phases | Co | Cr | Fe | Ni | Ta | |
---|---|---|---|---|---|---|
Ta0.1 | Overall | 24.3 ± 0.4 | 24.3 ± 0.4 | 24.8 ± 0.6 | 24.4 ± 0.8 | 2.3 ± 0.3 |
FCC | 24.0 ± 0.2 | 24.8 ± 0.3 | 25.4 ± 0.5 | 24.2 ± 0.6 | 1.8 ± 0.2 | |
Laves Phase | 24.2 ± 0.2 | 19.0 ± 0.4 | 17.3 ± 0.6 | 22.2 ± 0.3 | 17.4 ± 0.2 | |
Ta0.3 | Overall | 22.8 ± 0.4 | 25.3 ± 0.4 | 22.8 ± 0.6 | 22.8 ± 0.2 | 6.5 ± 0.3 |
FCC | 23.4 ± 0.2 | 26.7 ± 0.6 | 24.9 ± 0.3 | 22.1 ± 0.6 | 3.5 ± 0.4 | |
Laves Phase | 23.3 ± 0.2 | 18.5 ± 0.4 | 17.1 ± 0.6 | 18.1 ± 0.8 | 23.2 ± 1.1 | |
Ta0.5 | Overall | 23.3 ± 0.6 | 22.5 ± 0.7 | 22.8 ± 0.2 | 21.2 ± 0.5 | 10.3 ± 0.7 |
FCC | 22.7 ± 0.6 | 24.6 ± 0.5 | 24.6 ± 0.5 | 23.6 ± 0.2 | 4.7 ± 0.8 | |
Laves Phase | 23.9 ± 0.4 | 18.1 ± 0.2 | 19.2 ± 0.2 | 17.2 ± 0.2 | 21.9 ± 0.4 |
Alloys | 30 °C | 40 °C | 50 °C | 60 °C | |
---|---|---|---|---|---|
Ta0.1 | Ecorr (VSHE) | −0.32 | −0.34 | −0.32 | −0.33 |
icorr (µA) | 7.69 | 10.37 | 12.80 | 15.34 | |
Ta0.3 | Ecorr (VSHE) | −0.28 | −0.27 | −0.29 | −0.21 |
icorr (µA) | 3.02 | 4.75 | 10.92 | 20.32 | |
Ta0.5 | Ecorr (VSHE) | −0.22 | −0.23 | −0.24 | −0.35 |
icorr (µA) | 5.40 | 7.32 | 10.69 | 11.92 |
x | Ta0.1 | Ta0.3 | Ta0.5 |
---|---|---|---|
Rs (Ω) | 10.4 | 12.1 | 11.3 |
Rp (kΩ) | 0.964 | 24.2 | 30.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsau, C.-H.; Hsiao, R.-W.; Chien, T.-Y. Corrosion Behavior of CoCrFeNiTax Alloys in 1 M Sodium Chloride Aqueous Solution. Materials 2020, 13, 5157. https://doi.org/10.3390/ma13225157
Tsau C-H, Hsiao R-W, Chien T-Y. Corrosion Behavior of CoCrFeNiTax Alloys in 1 M Sodium Chloride Aqueous Solution. Materials. 2020; 13(22):5157. https://doi.org/10.3390/ma13225157
Chicago/Turabian StyleTsau, Chun-Huei, Rong-Wei Hsiao, and Tien-Yu Chien. 2020. "Corrosion Behavior of CoCrFeNiTax Alloys in 1 M Sodium Chloride Aqueous Solution" Materials 13, no. 22: 5157. https://doi.org/10.3390/ma13225157
APA StyleTsau, C.-H., Hsiao, R.-W., & Chien, T.-Y. (2020). Corrosion Behavior of CoCrFeNiTax Alloys in 1 M Sodium Chloride Aqueous Solution. Materials, 13(22), 5157. https://doi.org/10.3390/ma13225157