Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Research Samples
2.3. Monotonic Tensile Tests
2.4. Load Controlled Fatigue Tests
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Froes, F.H. (Ed.) Titanium: Physical Metallurgy, Processing, and Applications; ASM International: Almere, The Netherlands, 2015. [Google Scholar]
- Dutta, B.; Froes, F. Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Leyens, C.; Peters, M. (Eds.) Titanium and Titanium Alloys: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brunette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P. (Eds.) Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Szusta, J.; Tüzün, N.; Karakaş, Ö. Monotonic mechanical properties of titanium grade 5 (6Al-4V) welds made by microplasma. Theor. Appl. Fract. Mech. 2019, 100, 27–38. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Bathini, U.; Patnaik, A.; Quick, T. A study of cyclic fatigue, damage initiation, damage propagation, and fracture of welded titanium alloy plate. Mater. Sci. Eng. A 2010, 527, 6649–6659. [Google Scholar] [CrossRef]
- Balasubramanian, T.S.; Balasubramanian, V.; Manickam, M.M. Fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V alloy. Mater. Des. 2011, 32, 4509–4520. [Google Scholar] [CrossRef]
- Casavola, C.; Pappalettere, C.; Pluvinage, G. Fatigue resistance of titanium laser and hybrid welded joints. Mater. Des. 2011, 32, 3127–3135. [Google Scholar] [CrossRef]
- Walker, K.F.; Liu, Q.; Brandt, M. Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting. Int. J. Fatigue 2017, 104, 302–308. [Google Scholar] [CrossRef]
- Gallo, P.; Berto, F.; Lazzarin, P. High temperature fatigue tests of notched specimens made of titanium Grade 2. Theor. Appl. Fract. Mech. 2015, 76, 27–34. [Google Scholar] [CrossRef]
- Kikuchi, S.; Kubozono, H.; Nukui, Y.; Nakai, Y.; Ueno, A.; Kawabata, M.O.; Ameyama, K. Statistical fatigue properties and small fatigue crack propagation in bimodal harmonic structured Ti-6Al-4V alloy under four-point bending. Mater. Sci. Eng. A 2018, 711, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, J.; Huang, T.; Kou, H.; Zhou, L. Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 65, 814–823. [Google Scholar] [CrossRef]
- Carrion, P.E.; Shamsaei, N.; Daniewicz, S.R.; Moser, R.D. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects. Int. J. Fatigue 2017, 99, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.M.; Baptista, C.A.R.P.; Lima, M.S.F. Fatigue in laser welded titanium tubes intended for use in aircraft pneumatic systems. Int. J. Fatigue 2016, 90, 47–56. [Google Scholar] [CrossRef]
- Tsay, L.W.; Tsay, C.Y. The effect of microstructures on the fatigue crack growth in Ti-6Al-4V laser welds. Int. J. Fatigue 1997, 19, 713–720. [Google Scholar] [CrossRef]
- Greitemeier, D.; Palm, F.; Syassen, F.; Melz, T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 2017, 94, 211–217. [Google Scholar] [CrossRef]
- Vaidya, W.V.; Horstmann, M.; Ventzke, V.; Petrovski, B.; Koçak, M.; Kocik, R.; Tempus, G. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications Part I: Local gradients in microstructure, hardness and strength. Mater. Werkst. 2009, 40, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, W.V.; Horstmann, M.; Ventzke, V.; Petrovski, B.; Koçak, M.; Kocik, R.; Tempus, G. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: Resistance to fatigue crack propagation and fracture. Mater. Werkst. 2009, 40, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Iwata, T.; Matsuoka, K. Fatigue strength of CP grade 2 titanium fillet welded joint for ship structure. Weld. World 2004, 48, 40–47. [Google Scholar] [CrossRef]
- Karakas, Ö.; Morgenstern, C.; Sonsino, C.M.; Hanselka, H.; Vogt, H.M.; Dilger, K. Grundlagen für die Praktische Anwendung des Kerbspannungskonzeptes zur Schwingfestigkeitsbewertung von Geschweißten Bauteilen aus Magnesiumknetlegierungen; Bericht Nr. FB-232; Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF: Darmstadt, Germany, 2007. [Google Scholar]
- Karakas, Ö.; Gülsöz, A.; Kaufmann, H.; Sonsino, C.M. Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept. Mater. Werkst. 2010, 41, 73–82. [Google Scholar] [CrossRef]
- Karakas, Ö. Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts. Int. J. Fatigue 2013, 49, 1–17. [Google Scholar] [CrossRef]
- Karakaş, Ö.; Szusta, J. Monotonic and low cycle fatigue behaviour of 2024-T3 aluminium alloy between room temperature and 300 °C for designing VAWT components. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 95–109. [Google Scholar]
- Szusta, J.; Seweryn, A. Fatigue damage accumulation modelling in the range of complex low-cycle loadings—The strain approach and its experimental verification on the basis of EN AW-2007 aluminum alloy. Int. J. Fatigue 2011, 33, 255–264. [Google Scholar] [CrossRef]
- Szusta, J.; Seweryn, A. Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures. Int. J. Fatigue 2017, 96, 28–42. [Google Scholar] [CrossRef]
- Szusta, J. Low cycle fatigue of metallic materials under uniaxialloading at elevated temperature. Int. J. Fatigue 2018, 114, 272–281. [Google Scholar] [CrossRef]
- ISO. Metals-Tensile Test-Part 1; PN-EN ISO 6892-1; Comite Europeen de Normalisation: Brussels, Belgium, 2016. [Google Scholar]
Element. | Net Counts | Weight % | Weight % Error | Atom % | Atom % Error |
---|---|---|---|---|---|
Al | 263,482 | 5.94 | ±0.03 | 10.00 | ±0.05 |
Ti | 890,621 | 93.25 | ±0.33 | 88.51 | ±0.31 |
Cr | 2500 | 0.49 | ±0.04 | 0.43 | ±0.04 |
Other | 14,881 | 0.33 | ±0.01 | 1.05 | ±0.02 |
Total | - | 100.00 | - | 100.00 | - |
Parameter | Value | |
---|---|---|
Current | 18 | A |
Voltage | 14.8 | V |
Welding speed | 2 | mm/s |
Gas flow rate (He) | - | - |
Plasma gas | 6 | L/min |
Protective gas | 12 | L/min |
Undercoat gas | 20 | L/min |
Sample | E (GPa) | RYP (MPa) | RUTS (MPa) | RU (MPa) | A (%) | Z (%) |
---|---|---|---|---|---|---|
TYPE 1 | 115 | 1095 | 1122 | 1053 | 11.5 | 0.84 |
TYPE 2 | 103 | 1084 | 1114 | 1112 | 3 | 1.67 |
TYPE 3 | 114 | 1098 | 1146 | 1106 | 1.7 | 1.51 |
Sample | Unaffected Base Metal UBM | Heat Affected Zone HAZ | Weld Centre W |
---|---|---|---|
Type 2 | 358 HV | 438 HV | 368 HV |
Type 3 | 358 HV | 415 HV | 344 HV |
Loading Level | f (Hz) | Fmax (N) | Fmin (N) | σmax (MPa) | σmin (MPa) | εmax | εmin | Nf |
---|---|---|---|---|---|---|---|---|
in Half of Fatigue Life | ||||||||
TYPE 1 | ||||||||
0.92 σUTS | 0.5 | 13,488 | 0 | 1032 | 0 | 0.009209 | 0.00113 | 858 |
0.82 σUTS | 0.5 | 12,024 | 0 | 920 | 0 | 0.008044 | 0.00022 | 2449 |
0.72 σUTS | 0.5 | 10,560 | 0 | 808 | 0 | 0.007039 | 0.00019 | 4983 |
0.5 σUTS | 1 | 7332 | 0 | 561 | 0 | 0.004893 | 0.00014 | 35,529 |
TYPE 2 | ||||||||
0.92 σUTS | 0.5 | 13,440 | 0 | 1025 | 0 | 0.011387 | 0.00233 | 566 |
0.82 σUTS | 0.5 | 11,980 | 0 | 913 | 0 | 0.005053 | −0.00276 | 1111 |
0.72 σUTS | 0.5 | 10,520 | 0 | 800 | 0 | 0.00661 | −0.00017 | 3798 |
0.5 σUTS | 1 | 7300 | 0 | 560 | 0 | 0.000694 | −0.00392 | 28,930 |
TYPE 3 | ||||||||
0.92 σUTS | 0.5 | 13,910 | 0 | 1055 | 0 | 0.008114 | 0.001439 | 142 |
0.82 σUTS | 0.5 | 12,400 | 0 | 940 | 0 | 0.005985 | 0.000464 | 291 |
0.72 σUTS | 0.5 | 10,890 | 0 | 825 | 0 | 0.005724 | 0.000735 | 408 |
0.5 σUTS | 0.5 | 7560 | 0 | 575 | 0 | 0.003411 | −0.00023 | 950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szusta, J.; Tüzün, N.; Karakaş, Ö. Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets. Materials 2020, 13, 5128. https://doi.org/10.3390/ma13225128
Szusta J, Tüzün N, Karakaş Ö. Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets. Materials. 2020; 13(22):5128. https://doi.org/10.3390/ma13225128
Chicago/Turabian StyleSzusta, Jaroslaw, Nail Tüzün, and Özler Karakaş. 2020. "Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets" Materials 13, no. 22: 5128. https://doi.org/10.3390/ma13225128
APA StyleSzusta, J., Tüzün, N., & Karakaş, Ö. (2020). Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets. Materials, 13(22), 5128. https://doi.org/10.3390/ma13225128