Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tensile Testing of the Base Materials
Material | Type | Composition | FDA Approval |
---|---|---|---|
Agilus | Rubber-Like | Proprietary1 | None |
Proprietary2 | |||
Proprietary3 | |||
Proprietary4 | |||
Glycerol, propoxylated, esters with acrylic acid | |||
Acrylic acid, 2-hydroxyethyl ester | |||
Stabilizer | |||
2,6-Bis(1,1-Dimethylethyl)-4-Methyl-Phenol | |||
Camphene | |||
1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane | |||
VeroCyan | Rigid | Proprietary1 | None |
Proprietary2 | |||
Proprietary3 | |||
Proprietary4 | |||
Proprietary5 | |||
Proprietary6 | |||
Titanium dioxide | |||
Camphene | |||
Glycerol, propoxylated, esters with acrylic acid | |||
Ethoxylated Trimethylolpropane Triacrylate | |||
Acrylic acid | |||
Dragonskin 30 | Silicon | No data | None |
TPU 95A | Flexible | Thermoplastic polyurethane | None |
2.2. Patterns and Specimen Design
2.3. Tensile Testing of the Pattern-Embedded Specimens
2.4. Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.-U.; Giesel, F.L. 3D printing based on imaging data: Review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 2010, 5, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.B.; Lee, S.; Kim, H.; Yang, D.H.; Kim, Y.-H.; Kyung, Y.S.; Kim, C.-S.; Choi, S.H.; Kim, B.J.; Ha, H. Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean J. Radiol. 2016, 17, 182–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyle, S.; Jessop, Z.M.; Al-Sabah, A.; Whitaker, I.S. ‘Printability’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art. Adv. Healthc. Mater. 2017, 6, 1700264. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lin, L.; Zuo, Y.; Zou, Q.; Ren, X.; Li, J.; Li, Y. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Adv. 2019, 9, 5338–5346. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Kwon, J.; Ahn, C.J.; Esmaeli, B.; Kim, G.B.; Kim, N.; Sa, H.-S. Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction. Eye 2018. [Google Scholar] [CrossRef]
- Honigmann, P.; Sharma, N.; Okolo, B.; Popp, U.; Msallem, B.; Thieringer, F.M. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. BioMed Res. Int. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, T.J.; Steele, J.R.; Federer, A.E.; Hamid, K.S.; Adams, S.B. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot Ankle Int. 2018, 39, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-K.; Lim, J.-Y.; Yun, I.-S.; Kim, J.-S.; Woo, S.-H.; Kim, D.-S.; Shim, K.-W. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects. J. Craniofacial Surg. 2016, 27, 943–949. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Aroom, K.R.; Hawes, H.G.; Gill, B.S.; Love, J. 3D Printed Surgical Instruments: The Design and Fabrication Process. World J. Surg. 2017, 41, 314–319. [Google Scholar] [CrossRef]
- Rankin, T.M.; Giovinco, N.A.; Cucher, D.J.; Watts, G.; Hurwitz, B.; Armstrong, D.G. Three-dimensional printing surgical instruments: Are we there yet? J. Surg. Res. 2014, 189, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32. [Google Scholar] [CrossRef] [PubMed]
- Burfeindt, M.J.; Colgan, T.J.; Mays, R.O.; Shea, J.D.; Behdad, N.; Veen, B.D.V.; Hagness, S.C. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1610–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biglino, G.; Verschueren, P.; Zegels, R.; Taylor, A.M.; Schievano, S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J. Cardiovasc. Magn. Reson. 2013, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Cloonan, A.J.; Shahmirzadi, D.; Li, R.X.; Doyle, B.J.; Konofagou, E.E.; McGloughlin, T.M. 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications. 3D Print. Addit. Manuf. 2014, 1, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Vukicevic, M.; Mosadegh, B.; Min, J.K.; Little, S.H. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc. Imaging 2017, 10, 171–184. [Google Scholar] [CrossRef]
- Maragiannis, D.; Jackson, M.S.; Igo, S.R.; Schutt, R.C.; Connell, P.; Grande-Allen, J.; Barker, C.M.; Chang, S.M.; Reardon, M.J.; Zoghbi, W.A.; et al. Replicating Patient-Specific Severe Aortic Valve Stenosis With Functional 3D Modeling. Circ. Cardiovasc. Imaging 2015, 8, e003626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medero, R.; García-Rodríguez, S.; François, C.J.; Roldán-Alzate, A. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease—Additive manufacturing approach. J. Biomech. 2017, 54, 111–116. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Chang, Y.-H.; Qian, Z.; Zhang, C.; Wang, B.; Vannan, M.; Wang, M.-J. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms. Mater. Des. 2015, 90. [Google Scholar] [CrossRef]
- Wang, K.; Wu, C.; Qian, Z.; Zhang, C.; Wang, B.; Vannan, M.A. Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit. Manuf. 2016, 12, 31–37. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, F.; Qi, B.; Ding, Z.; Rosen, D.W.; Ge, Q. 3D printing of multi-material composites with tunable shape memory behavior. Mater. Des. 2020, 193, 108785. [Google Scholar] [CrossRef]
- Bass, L.; Meisel, N.A.; Williams, C.B. Exploring variability of orientation and aging effects in material properties of multi-material jetting parts. Rapid Prototyp. J. 2016, 22, 826–834. [Google Scholar] [CrossRef]
- Vicknes, W.; Vairavan, N.; Ravindran, K.; Sarah, L.F.O.; Tipu, A. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg. JNS 2014, 120, 489–492. [Google Scholar] [CrossRef]
- Wu, W.; Hu, W.; Qian, G.; Liao, H.; Xu, X.; Berto, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 2019, 180, 107950. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y. 3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores. Sci. Rep. 2018, 8, 2397. [Google Scholar] [CrossRef] [Green Version]
- Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical Metamaterials and Their Engineering Applications. Adv. Eng. Mater. 2019, 21, 1800864. [Google Scholar] [CrossRef] [Green Version]
- Sokolis, D.P.; Kefaloyannis, E.M.; Kouloukoussa, M.; Marinos, E.; Boudoulas, H.; Karayannacos, P.E. A structural basis for the aortic stress–strain relation in uniaxial tension. J. Biomech. 2006, 39, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- García-Herrera, C.M.; Atienza, J.M.; Rojo, F.J.; Claes, E.; Guinea, G.V.; Celentano, D.J.; García-Montero, C.; Burgos, R.L. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 2012, 50, 559–566. [Google Scholar] [CrossRef]
- Sauren, A.A.H.J.; van Hout, M.C.; van Steenhoven, A.A.; Veldpaus, F.E.; Janssen, J.D. The mechanical properties of porcine aortic valve tissues. J. Biomech. 1983, 16, 327–337. [Google Scholar] [CrossRef]
- O’Reilly, M.K.; Reese, S.; Herlihy, T.; Geoghegan, T.; Cantwell, C.P.; Feeney, R.N.M.; Jones, J.F.X. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat. Sci. Educ. 2016, 9, 71–79. [Google Scholar] [CrossRef] [Green Version]
- McKinley, S.; Garg, A.; Sen, S.; Kapadia, R.; Murali, A.; Nichols, K.; Lim, S.; Patil, S.; Abbeel, P.; Okamura, A.M.; et al. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1151–1158. [Google Scholar]
- Agilus. SDS-06173 EN A. Stratasys, Ltd.: Eden Prairie, MN, USA, 1 July 2020. Available online: https://www.stratasys.co.kr/sds (accessed on 21 October 2020).
- VeroCyan. SDS-06170 EN A. Stratasys, Ltd.: Eden Prairie, MN, USA, 21 May 2020. Available online: https://www.stratasys.co.kr/sds (accessed on 21 October 2020).
- Dragon Skin® Series. SDS No. 823A. Smooth-On, Inc.: Macungie, PA, USA, 3 January 2020. Available online: https://www.smooth-on.com/msds/files/BD_DS_Eco_Equ_EZB_EZS_Psy_MS_OOMOO_Reb_ST_SS_Soma_Sol_Sorta.pdf (accessed on 21 October 2020).
- TPU 95A. Ultimaker B.V.: Geldermalsen, The Netherlands, 14 January 2019. Available online: https://support.ultimaker.com/hc/en-us/articles/360012061239-Ultimaker-TPU-95A-SDS (accessed on 21 October 2020).
- ASTM International. ASTM D638-14. In Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM International. ASTM D412-16. In Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Dart, A.; Silagy, C.; Dewar, E.; Jennings, G.; Mcneil, J. Aortic distensibility and left ventricular structure and function in isolated systolic hypertension. Eur. Heart J. 1993, 14, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- De Heer, L.M.; Budde, R.P.J.; Mali, W.P.T.M.; de Vos, A.M.; van Herwerden, L.A.; Kluin, J. Aortic root dimension changes during systole and diastole: Evaluation with ECG-gated multidetector row computed tomography. Int. J. Cardiovasc. Imaging 2011, 27, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Coulter, F.B.; Schaffner, M.; Faber, J.A.; Rafsanjani, A.; Smith, R.; Appa, H.; Zilla, P.; Bezuidenhout, D.; Studart, A.R. Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing. Matter 2019, 1, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Van Kampen, K.A.; Olaret, E.; Stancu, I.-C.; Moroni, L.; Mota, C. Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical properties. Mater. Sci. Eng. C 2020, 119, 111472. [Google Scholar] [CrossRef]
- Isaka, M.; Nishibe, T.; Okuda, Y.; Saito, M.; Seno, T.; Yamashita, K.; Izumisawa, Y.; Kotani, T.; Yasuda, K. Experimental study on stability of a high-porosity expanded polytetrafluoroethylene graft in dogs. Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia 2006, 12, 37–41. [Google Scholar]
- Mun, C.H.; Jung, Y.; Kim, S.-H.; Lee, S.-H.; Kim, H.C.; Kwon, I.K.; Kim, S. Three-Dimensional Electrospun Poly(Lactide-Co-ɛ-Caprolactone) for Small-Diameter Vascular Grafts. Tissue Eng. Part A 2012, 18, 1608–1616. [Google Scholar] [CrossRef]
Dimension | Agilus ASTM D638 Type I | VeroCyan ASTM D638 Type IV | Dragonskin 30 and TPU 95A ASTM D412 Type I |
---|---|---|---|
Width of narrow section | 13 | 6 | 6 |
Length of narrow section | 57 | 33 | 33 |
Minimum overall width | 19 | 19 | 25 |
Minimum overall length | 165 | 115 | 115 |
Gage length | 50 | 25 | 25 |
Distance between grips | 115 | 65 | - |
Radius of fillet | 76 | 14 | 14 |
Outer radius | - | 25 | 25 |
Name | Type | Fiber Diameters (mm) | Major Axis (mm) | Minor Axis (mm) |
---|---|---|---|---|
Pattern A | Anisotropic | 0.7 and 1.4 | 15.66 | 5.66 |
Pattern B | Orthotropic | 13.86 | 8.00 | |
Pattern C | Orthotropic | 11.09 | 11.09 |
Material | Diameter (mm) | Pattern Type | Mean Yield Stres (MPa) | Strain at Break (mm/mm) |
---|---|---|---|---|
Agilus-VeroCyan | 0.7 | A major | 0.64 ± 0.03 | 0.83 ± 0.52 |
A minor | 0.50 ± 0.01 | 1.29 ± 0.04 | ||
B major | 0.79 ± 0.05 | 0.60 ± 0.22 | ||
B minor | 0.59 ± 0.01 | 1.50 ± 0.05 | ||
C | 0.63 ± 0.04 | 0.76 ± 0.16 | ||
Dragonskin 30–TPU 95A | A major | 1.40 ± 0.09 | 4.20 ± 0.45 | |
A minor | 1.27 ± 0.10 | 3.78 ± 0.26 | ||
B major | 1.45 ± 0.11 | 3.85 ± 0.38 | ||
B minor | 1.29 ± 0.08 | 3.04 ± 0.30 | ||
C | 1.03 ± 0.06 | 3.17 ± 0.31 | ||
Agilus-VeroCyan | 1.4 | A major | 1.19 ± 0.07 | 0.50 ± 0.10 |
A minor | 1.09 ± 0.07 | 0.39 ± 0.08 | ||
B major | 2.88 ± 0.18 | 0.32 ± 0.06 | ||
B minor | 0.62 ± 0.02 | 0.74 ± 0.05 | ||
C | 2.15 ± 0.12 | 0.27 ± 0.03 | ||
Dragonskin 30–TPU 95A | A major | 1.54 ± 0.12 | 2.70 ± 0.34 | |
A minor | 1.40 ± 0.06 | 2.90 ± 0.23 | ||
B major | 1.85 ± 0.08 | 2.58 ± 0.12 | ||
B minor | 1.09 ± 0.10 | 2.49 ± 0.22 | ||
C | 2.15 ± 0.15 | 3.18 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.; Ock, J.; Kim, N. Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom. Materials 2020, 13, 5042. https://doi.org/10.3390/ma13215042
Kwon J, Ock J, Kim N. Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom. Materials. 2020; 13(21):5042. https://doi.org/10.3390/ma13215042
Chicago/Turabian StyleKwon, Jaeyoung, Junhyeok Ock, and Namkug Kim. 2020. "Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom" Materials 13, no. 21: 5042. https://doi.org/10.3390/ma13215042
APA StyleKwon, J., Ock, J., & Kim, N. (2020). Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom. Materials, 13(21), 5042. https://doi.org/10.3390/ma13215042