Effect of the Free Volume on the Electronic Structure of Cu70Zr30 Metallic Glasses
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashby, M.; Greer, A.L. Metallic glasses as structural materials. Scr. Mater. 2006, 54, 321–326. [Google Scholar] [CrossRef]
- Sun, Y.; Concustell, A.; Greer, A.L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state. Nat. Rev. Mater. 2016, 1, 16039. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Ivanov, Y.P.; Zhou, W.H.; Li, Y.; Greer, A.L. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 2020, 578, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47–58. [Google Scholar] [CrossRef]
- Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef]
- Egami, T.; Iwashita, T.; Dmowski, W. Mechanical Properties of Metallic Glasses. Metals 2013, 3, 77–113. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, L.; Chen, Q.; Pan, J.; Chan, K.C. The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D Appl. Phys. 2007, 40, 6055–6059. [Google Scholar] [CrossRef]
- Slipenyuk, A.; Eckert, J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 2004, 50, 39–44. [Google Scholar] [CrossRef]
- Haruyama, O.; Nakayama, Y.; Wada, R.; Tokunaga, H.; Okada, J.; Ishikawa, T.; Yokoyama, Y. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass. Acta Mater. 2010, 58, 1829–1836. [Google Scholar] [CrossRef]
- Evenson, Z.; Busch, R. Equilibrium viscosity, enthalpy recovery and free volume relaxation in a Zr44Ti11Ni10Cu10Be25 bulk metallic glass. Acta Mater. 2011, 59, 4404–4415. [Google Scholar] [CrossRef]
- Yavari, A.R.; Le Moulec, A.; Inoue, A.; Nishiyama, N.; Lupu, N.; Matsubara, E.; Botta, W.J.; Vaughan, G.; Di Michiel, M.; Kvick, Å. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 2005, 53, 1611–1619. [Google Scholar] [CrossRef]
- Fan, C.; Liu, C.T.; Chen, G.; Liaw, P.K. Quantitatively defining free-volume, interconnecting-zone and cluster in metallic glasses. Intermetallics 2015, 57, 98–100. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.C.; Lu, J.; Liu, C.T.; Wang, Q.; Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 2010, 9, 619–623. [Google Scholar] [CrossRef]
- Schnabel, V.; Jaya, B.N.; Köhler, M.; Music, D.; Kirchlechner, C.; Dehm, G.; Raabe, D.; Schneider, J.M. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses. Sci. Rep. 2016, 6, 36556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evertz, S.; Kirchlechner, I.; Soler, R.; Kirchlechner, C.; Kontis, P.; Bednarcik, J.; Gault, B.; Dehm, G.; Raabe, D.; Schneider, J.M. Electronic structure based design of thin film metallic glasses with superior fracture toughness. Mater. Design 2020, 186, 108327. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Hostert, C.; Music, D.; Bednarcik, J.; Keckes, J.; Kapaklis, V.; Hjorvarsson, B.; Schneider, J.M. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films. J. Phys. Condens. Mat. 2011, 23, 475401. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 2005, 72, 45121. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300° K. J. Geophys. Res. 1978, 83, 1257. [Google Scholar] [CrossRef]
- Music, D.; Takahashi, T.; Vitos, L.; Asker, C.; Abrikosov, I.A.; Schneider, J.M. Elastic properties of Fe–Mn random alloys studied by ab initio calculations. Appl. Phys. Lett. 2007, 91, 191904. [Google Scholar] [CrossRef] [Green Version]
- Dronskowski, R.; Bloechl, P.E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624. [Google Scholar] [CrossRef]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, F. Homogeneous flow of metallic glasses: A free volume perspective. Scr. Mater. 2006, 54, 363–367. [Google Scholar] [CrossRef]
- Dyre, J.C.; Wang, W.H. The instantaneous shear modulus in the shoving model. J. Chem. Phys. 2012, 136, 224108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.G.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Song, S.X.; Nieh, T.G. Correlation between onset of yielding and free volume in metallic glasses. Scr. Mater. 2010, 62, 477–480. [Google Scholar] [CrossRef]
- Lejaeghere, K.; van Speybroeck, V.; van Oost, G.; Cottenier, S. Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals. Crit. Rev. Solid State Mater. Sci. 2014, 39, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Carter, F.L. On Deriving Density of States Information from Chemical Bond Considerations. In Electronic Density of States Based on Invited and Contributed Papers and Discussion, 3rd Materials Research Symposium; Bennet, L.H., Ed.; NBS Special Publication: Washington, DC, USA, 1971; pp. 385–405. [Google Scholar]
- Li, F.; Liu, X.J.; Lu, Z.P. Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comp. Mater. Sci. 2014, 85, 147–153. [Google Scholar] [CrossRef]
- Babanov, Y.A.; Schvetsov, V.R.; Sidorenko, A.F. Atomic structure of binary amorphous alloys by combined EXAFS and X-ray scattering. Phys. B Condens. Mat. 1995, 208–209, 375–376. [Google Scholar] [CrossRef]
- Evertz, S.; Music, D.; Schnabel, V.; Bednarcik, J.; Schneider, J.M. Thermal expansion of Pd-based metallic glasses by ab initio methods and high energy X-ray diffraction. Sci. Rep. 2017, 7, 15744. [Google Scholar] [CrossRef]
Free Volume (%) | Total Energy (eV) | Energy per Atom (eV/Atom) | Supercell Volume (Å3) | Energy Density (eV/Å3) | Bulk Modulus (GPa) | Shear Modulus (GPa) |
---|---|---|---|---|---|---|
Structural model 1 | ||||||
0.0 | −590.6 | −5.12 | 1847.5 | −0.320 | 114.4 | 39.2 |
0.9 | −582.2 | −5.11 | 1847.5 | −0.315 | 111.3 | 37.9 |
1.8 | −576.3 | −5.10 | 1847.5 | −0.312 | 113.4 | 37.2 |
2.7 | −576.4 | −5.14 | 1847.5 | −0.312 | 116.1 | 38.7 |
3.6 | −566.4 | −5.10 | 1847.5 | −0.307 | 111.5 | 35.5 |
4.5 | −548.1 | −4.98 | 1847.5 | −0.297 | 106.1 | 35.9 |
Structural model 2 | ||||||
0.0 | −589.9 | −5.13 | 1857.0 | −0.317 | 113.7 | 40.2 |
0.9 | −582.5 | −5.11 | 1857.0 | −0.314 | 111.3 | 38.1 |
1.8 | −574.2 | −5.08 | 1857.0 | −0.309 | 112.3 | 36.9 |
2.7 | −567.3 | −5.06 | 1857.0 | −0.305 | 112.0 | 34.4 |
3.6 | −570.9 | −5.14 | 1857.0 | −0.307 | 115.1 | 37.4 |
4.5 | −557.3 | −5.06 | 1857.0 | −0.300 | 112.1 | 34.2 |
Structural model 3 | ||||||
0.0 | −592.9 | −5.16 | 1831.8 | −0.324 | 114.9 | 43.0 |
0.9 | −585.8 | −5.14 | 1831.8 | −0.320 | 111.1 | 41.5 |
1.8 | −577.1 | −5.11 | 1831.8 | −0.315 | 108.3 | 40.4 |
2.7 | −573.2 | −5.12 | 1831.8 | −0.313 | 103.7 | 38.5 |
3.6 | −569.8 | −5.13 | 1831.8 | −0.311 | 102.3 | 37.9 |
4.5 | −559.2 | −5.08 | 1831.8 | −0.305 | 96.5 | 35.6 |
Structural model 4 | ||||||
0.0 | −588.7 | −5.12 | 1839.0 | −0.320 | 114.6 | 38.4 |
0.9 | −581.7 | −5.10 | 1839.0 | −0.316 | 111.2 | 40.3 |
1.8 | −572.4 | −5.07 | 1839.0 | −0.311 | 110.4 | 37.4 |
2.7 | −569.4 | −5.08 | 1839.0 | −0.309 | 110.7 | 38.8 |
3.6 | −564.0 | −5.08 | 1839.0 | −0.307 | 110.6 | 36.4 |
4.5 | −554.6 | −5.04 | 1839.0 | −0.302 | 110.1 | 37.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evertz, S.; Schneider, J.M. Effect of the Free Volume on the Electronic Structure of Cu70Zr30 Metallic Glasses. Materials 2020, 13, 4911. https://doi.org/10.3390/ma13214911
Evertz S, Schneider JM. Effect of the Free Volume on the Electronic Structure of Cu70Zr30 Metallic Glasses. Materials. 2020; 13(21):4911. https://doi.org/10.3390/ma13214911
Chicago/Turabian StyleEvertz, Simon, and Jochen M. Schneider. 2020. "Effect of the Free Volume on the Electronic Structure of Cu70Zr30 Metallic Glasses" Materials 13, no. 21: 4911. https://doi.org/10.3390/ma13214911
APA StyleEvertz, S., & Schneider, J. M. (2020). Effect of the Free Volume on the Electronic Structure of Cu70Zr30 Metallic Glasses. Materials, 13(21), 4911. https://doi.org/10.3390/ma13214911