Thermoelectric Properties of Sb-S System Compounds from DFT Calculations
Abstract
1. Introduction
2. Methods
2.1. DFT Calculations
2.2. Electronic Transport Calculations
2.3. QTAIM Calculations
3. Results and Discussion
3.1. The Sb2S3 Compound
3.1.1. Pure Sb2S3
3.1.2. The Be-Sb2S3 Alloy
3.2. The SbS2 Compound
3.2.1. Pure SbS2
3.2.2. The Zn-SbS2 Alloy
3.2.3. The Ga-SbS2 Alloy
4. Concluding Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Boulet, P.; Record, M.-C. New insight into the structure-property relationships from chemical bonding analysis: Application to thermoelectric materials. J. Solid State Chem. 2020, 286, 121266. [Google Scholar] [CrossRef]
- Phillips, J.C. A posteriori theory of covalent bonding. Phys. Rev. Lett. 1967, 19, 415–417. [Google Scholar] [CrossRef]
- Phillips, J.C. Dielectric definition of electronegativity. Phys. Rev. Lett. 1968, 20, 550–553. [Google Scholar] [CrossRef]
- Phillips, J.C. Covalent bond in crystals, II. Partially ionic binding. Phys. Rev. 1968, 168, 905–911. [Google Scholar] [CrossRef]
- Phillips, J.C.; Van Vechten, J.A. Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 1969, 22, 705–708. [Google Scholar] [CrossRef]
- Stiles, P.J. Trends in the ionicity in the average valence V materials. Solid State Comm. 1972, 11, 1063–1066. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Henneker, W.H.; Cade, P.E. Molecular Charge Distributions and Chemical Binding. J. Chem. Phys. 1967, 46, 3341–3363. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Preston, H.J.T. The kinetic energy of molecular charge distributions and molecular stability. Int. J. Quant. Chem. 1969, 3, 327–347. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Stephens, M.E. Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 1975, 97, 7391–7399. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Essén, H. The characterization of atomic interactions. J. Chem. Phys. 1984, 80, 1943–1960. [Google Scholar] [CrossRef]
- Skinner, B.J.; Luce, F.D.; Makovicky, E. Studies of the sulfosalts of copper III. Phases and phase relations in the system Cu-Sb-S. Econ. Geol. 1972, 67, 924–938. [Google Scholar] [CrossRef]
- Tesfaye Firdu, F.; Taskinen, P. Thermodynamics and Phase Equilibria in the (Ni, Cu, Zn)-(As, Sb, Bi)-S Systems at Elevated Temperatures (300–900°C); Aalto University Publications in Materials Science and Engineering: Aalto, Finland, 2010. [Google Scholar]
- Ghosh, C.; Varma, B.P. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Film. 1979, 60, 61–65. [Google Scholar] [CrossRef]
- Savadogo, O.; Mandal, K.C. Low- cost technique for preparing n-Sb2S3/p-Si heterojunction solar cells. Appl. Phys. Lett. 1993, 63, 228–230. [Google Scholar] [CrossRef]
- Yang, R.X.; Butler, K.T.; Walsh, A. Assessment of hybrid organic-inorganic antimony sulfides for earth-abundant photovoltaic applications. J. Phys. Chem. Lett. 2015, 6, 5009–5014. [Google Scholar] [CrossRef]
- Kondrotas, R.; Chen, C.; Tang, J. Sb2S3 Solar Cells. Joule 2018, 2, 857–878. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Wang, J.; Xu, Y.; Wei, Y.; Wei, Y.; Qiu, L.; Lu, H.; Ding, Y.; Zhu, J. Sb2S3 solar cells: Functional layer preparation and device performance. Inorg. Chem. Front. 2019, 6, 3381–3397. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X.; Jiang, J.; Liu, C.; Zhou, J.; Ni, J.; Zhang, J.P. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Sol. Energy Mater. Sol. Cells 2020, 206, 110279. [Google Scholar] [CrossRef]
- Lei, H.; Chen, J.; Tan, Z.; Fang, G. Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices. Solar RLL 2019, 3, 1900026. [Google Scholar] [CrossRef]
- Guo, H.; Hou, W.; Liang, B.; Zhang, H. Fabrication and Photocatalytic Performance of Sb2S3 Film/ITO Combination. Catal. Lett. 2017, 147, 2592–2599. [Google Scholar] [CrossRef]
- Hosseini, M.; Pourabadeh, A.; Fakhri, A.; Hallajzadeh, J.; Tahami, S. Synthesis and characterization of Sb2S3-CeO2/chitosan-starch as a heterojunction catalyst for photo-degradation of toxic herbicide compound: Optical, photo-reusable, antibacterial and antifungal performances. Int. J. Biol. Macromol. 2018, 118, 2108–2112. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.; Tang, M.; Liu, Y.; Liu, X.; Wang, H. Facile synthesis of an urchin-like Sb2S3 nanostructure with high photocatalytic activity. RSC Adv. 2018, 8, 18451–18455. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, J. Facile Synthesis of 1D/2D Core-Shell Structured Sb2S3@MoS2 Nanorods with Enhanced Photocatalytic Performance. Electron. Mater. Lett. 2018, 14, 499–504. [Google Scholar] [CrossRef]
- Linsen, H.; Liangxing, Z.; Deyu, B.; Xiaoqing, J.; Junhua, L.; Xiaosong, S. Hybrid photo-catalyst of Sb2S3 NRs wrapped with rGO by C–S bonding: Ultra-high photo-catalysis effect under visible light. Appl. Surf. Sci. 2020, 526, 146742. [Google Scholar] [CrossRef]
- Nayak, B.B.; Acharya, H.N. Electrical and thermoelectric properties of antimony(III) sulfide thin films prepared by the dip-dry method. Thin Solid Film. 1984, 122, 93–103. [Google Scholar] [CrossRef]
- Ben Nasr, T.; Maghraoui-Meherzi, H.; Kamoun-Turki, N. First-principles study of electronic, thermoelectric and thermal properties of Sb2S3. J. Alloy. Compd. 2016, 663, 123–127. [Google Scholar] [CrossRef]
- Clark, A.H. Supergene metastibnite from Mina Alacrán, Pampa Larga, Copiapo, Chile. Am. Mineral. 1970, 55, 2104–2106. [Google Scholar]
- Brookins, D.G. Stability of stibnite, metastibnite, and some probable dissolved antimony species at 298.15 degrees K and 1 atmosphere. Econ. Geol. 1972, 67, 369–372. [Google Scholar] [CrossRef]
- Olivier-Fourcade, J.; Maurin, M.; Philippot, E. Étude cristallochimique de système Li2S-Sb2S3. Revue de Chimie Minérale 1983, 20, 196–213. [Google Scholar]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Kyono, A.; Kimata, M. Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral. 2004, 89, 932–940. [Google Scholar] [CrossRef]
- Madsen, G.K.H.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Comm. 2006, 175, 67–71. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A.; Johnson, E.R.; Luaña, V. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Comm. 2014, 185, 1007–1018. [Google Scholar] [CrossRef]
- Kirzhnits, D.A. Quantum corrections to the Thomas–Fermi equation. Sov. Phys. JETP 1957, 5, 64–71. [Google Scholar]
- Kirzhnits, D.A. Field Theoretical Methods in Many-Body Systems; Pergamon Press: Long Island City, NY, USA, 1967. [Google Scholar]
- Abramov, Y.A. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr. Sect. A Found. Crystallogr. 1997, 53, 264–272. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Gervasio, G.; Bianchi, R.; Marabello, D. About the topological classification of the metal-metal bond. Chem. Phys. Lett. 2004, 387, 481–484. [Google Scholar] [CrossRef]
- Gatti, C. Chemical bonding in crystals: New directions. Z. Kristallogr. Cryst. Mater. 2005, 220, 399–457. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Cope, A.D. Photoconductive Device. U.S. Patent No. 2,875,359, 24 February 1959. [Google Scholar]
- Grigas, J.; Meshkauska, J.; Orliukas, A. Dielectric properties of Sb2S3 at microwave frequencies. Phys. Status Solidi A 1976, 37, K39–K41. [Google Scholar] [CrossRef]
- Ablova, M.S.; Andreev, A.A.; Dedegkaev, T.T. Switching effect in Sb2S3. Sov. Phys. Semicond. USSR 1976, 10, 629–631. [Google Scholar]
- Chockalingam, M.J.; Rao, K.N.; Rangarajan, N.; Suryanarayana, C.V. Studies on sintered photoconductive layers of antimony trisulphide. J. Phys. D App. Phys. 1970, 3, 1641. [Google Scholar] [CrossRef]
- George, J.; Radhakrishnan, M.K. Electrical conduction in coevaporated antimony trisulphide films. Solid State Commun. 1980, 33, 987–989. [Google Scholar] [CrossRef]
- Arun, P.; Vedeshwar, A.G. Phase modification by instantaneous heat treatment of Sb2S3 films and their potential for photothermal optical recording. J. Appl. Phys. 1996, 79, 4029–4036. [Google Scholar] [CrossRef]
- Salem, A.M.; Selim, M.S. Structure and optical properties of chemically deposited Sb2S3 thin films. J. Phys. D Appl. Phys. 2001, 34, 12–17. [Google Scholar] [CrossRef]
- Maghraoui-Meherzi, H.; Nasr, T.B.; Kamoun, N.; Dachraoui, M. Structural, morphology and optical properties of chemically deposited Sb2S3 thin films. Phys. B Condens. Matter. 2010, 405, 3101–3105. [Google Scholar] [CrossRef]
- Dutková, E.; Takacs, L.; Sayagués, M.J.; Balaz, P.; Kovac, J.; Satka, A. Mechanochemical synthesis of Sb2S3 and Bi2S3 nanoparticles. Chem. Eng. Sci. 2013, 85, 25–29. [Google Scholar] [CrossRef]
- Roy, B.; Chakraborty, B.R.; Bhattacharya, R.; Dutta, A.K. Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it. Solid State Commun. 1978, 25, 937–940. [Google Scholar] [CrossRef]
- Rajpure, K.Y.; Bhosale, C.H. Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. J. Phys. Chem. Solids 2000, 61, 561–568. [Google Scholar] [CrossRef]
- Sun, M.; Li, D.; Li, W.; Chen, Y.; Chen, Z.; He, Y.; Fu, X. New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C. 2008, 112, 18076–18081. [Google Scholar] [CrossRef]
- Carey, J.J.; Allen, J.P.; Scanlon, D.O.; Watson, G.W. The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications. J. Solid State Chem. 2014, 213, 116–125. [Google Scholar] [CrossRef]
- Caracas, R.; Gonze, X. First-principles study of the electronic properties of A2B3 minerals, with A= Bi, Sb and B= S, Se. Phys. Chem. Miner. 2005, 32, 295–300. [Google Scholar] [CrossRef]
- Nasr, T.B.; Maghraoui-Meherzi, H.; Abdallah, H.B.; Bennaceur, R. Electronic structure and optical properties of Sb2S3 crystal. Phys. B Condens. Matter 2011, 406, 287–292. [Google Scholar] [CrossRef]
- Onida, G.; Reining, L.; Rubio, A. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 2002, 74, 601–659. [Google Scholar] [CrossRef]
- Dennis, J.H. Anisotropy of the Seebeck coefficients of bismuth telluride. Adv. Energy Convers. 1961, 1, 99–105. [Google Scholar] [CrossRef]
- Cordier, G.; Schwidetzky, C.; Schäfer, H. New SbS2 strings in the BaSb2S4 structure. J. Solid State Chem. 1984, 54, 84–88. [Google Scholar] [CrossRef]
- Takebe, H.; Hirakawa, T.; Ichiki, T.; Morinaga, K. Thermal stability and structure of Ge-Sb-S glasses. J. Ceram. Soc. Jpn. 2003, 111, 572–575. [Google Scholar] [CrossRef]
- Ajalkar, B.D.; Chigare, P.S.; Bhosale, P.N. Synthesis and study of physico-chemical properties of nanocystalline (Mo:SbS2) thin films. In Proceedings of the International Conference on Eerging Horizons in Biochemical Sciences and Nanomaterials, Solapur, India, 28–30 November 2013. [Google Scholar]
Structure | a | b | c | Volume | Energy Gap |
---|---|---|---|---|---|
Sb2S3 | 11.803 | 3.883 | 11.289 | 517.4 | 1.43 |
Sb2S3Be2 | 12.790 | 3.794 | 11.588 | 562.3 | 0.55 |
SbS2 | 6.564 | 6.564 | 8.141 | 350.8 | 0.79 |
ZnSbS2 | 6.919 | 6.919 | 6.839 | 327.4 | 0.65 |
GaSbS2 | 6.939 | 6.939 | 8.032 | 386.7 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Boulet, P.; Record, M.-C. Thermoelectric Properties of Sb-S System Compounds from DFT Calculations. Materials 2020, 13, 4707. https://doi.org/10.3390/ma13214707
Yang H, Boulet P, Record M-C. Thermoelectric Properties of Sb-S System Compounds from DFT Calculations. Materials. 2020; 13(21):4707. https://doi.org/10.3390/ma13214707
Chicago/Turabian StyleYang, Hailong, Pascal Boulet, and Marie-Christine Record. 2020. "Thermoelectric Properties of Sb-S System Compounds from DFT Calculations" Materials 13, no. 21: 4707. https://doi.org/10.3390/ma13214707
APA StyleYang, H., Boulet, P., & Record, M.-C. (2020). Thermoelectric Properties of Sb-S System Compounds from DFT Calculations. Materials, 13(21), 4707. https://doi.org/10.3390/ma13214707