Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. Optical Properties Measurements
2.3. Surface Roughness Measurements
2.4. Artificial Ageing of the Samples by Thermocycling
2.5. Scanning Electron Microscopy (SEM)
2.6. Method of Statistical Analysis
3. Results
3.1. Translucency Parameter
3.2. Opalescence Parameter (OP)
3.3. Roughness measurements
3.3.1. Arithmetic mean surface roughness (Ra)
3.3.2. Maximum Surface Roughness (Rz)
3.4. Scanning Electron Microscopy (SEM)
4. Discussion
5. Conclusions
- The ageing processes affected the milled ceramic more than the heat-pressed. From both groups, milled and heat-pressed, the zirconia reinforced lithium silicate glass-ceramic experienced a more significant change in translucency and opalescence parameter values.
- The glazed samples on all of the samples were affected by the ageing process; the glaze changed its structure and became rougher. The only exception was for the feldspathic heat-pressed glass-ceramic.
- The zirconia reinforced lithium silicate glass-ceramic and feldspathic glass-ceramic were the most affected by the ageing process; the lithium disilicate glass-ceramic ceramic kept their properties close to the initial ones. From the lithium disilicate glass-ceramic ceramic, the milled one experienced more significant change compared to the heat-pressed in terms of optical properties and roughness.
Author Contributions
Funding
Conflicts of Interest
References
- Motro, P.F.; Kursoglu, P.; Kazazoglu, E. Effects of different surface treatments on stainability of ceramics. J. Prosthet. Dent. 2012, 108, 231–237. [Google Scholar] [CrossRef]
- Moffa, J.P. Porcelain materials. Adv. Dent. Res. 1988, 2, 3–6. [Google Scholar] [CrossRef]
- Albakry, M.; Guazzato, M.; Swain, M.V. Fracture toughness and hardness evaluation on three pressable all-ceramic dental materials. J. Dent. 2003, 31, 181–188. [Google Scholar] [CrossRef]
- Fasbinder, D.J. Clinical performance of chairside CAD/CAM restorations. J. Am. Dent. Assoc. 2006, 137, 22S–31S. [Google Scholar] [CrossRef]
- Ng, J.; Ruse, D.; Wyatt, C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J. Prosthet. Dent. 2014, 112, 555–560. [Google Scholar] [CrossRef]
- Gawriołek, M.; Sikorska, E.; Ferreira, L.F.; Costa, A.I.; Khmelinskii, I.; Krawczyk, A.; Sikorski, M.; Koczorowski, P.R. Color and luminescence stability of selected dental materials in vitro. J. Prosthodont. Implant. Reconstr. Dent. 2012, 21, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.F.; Zhang, J.; Luo, D.W.; Gu, F.; Tang, D.N.; Dong, Z.L.; Tan, G.E.B.; Que, W.X.; Zhang, T.S.; Li, S.; et al. Transparent ceramics: Processing, materials and applications. Prog. Solid State Chem. 2013, 41, 20–54. [Google Scholar] [CrossRef]
- Villarroel, M.; Fahl, N.; de Sousa, A.M.; de Oliveira, O.B. Direct esthetic restorations based on transparency and opacity of composite resins. J. Esthet. Restor. Dent. 2011, 23, 73–87. [Google Scholar] [CrossRef]
- El-Meliegy, E. Preparation and characterization of low fusion leucite dental porcelain. Br. Ceram. Trans. 2003, 102, 261–264. [Google Scholar] [CrossRef]
- Ilie, N.; Hickel, R. Correlation between ceramics translucency and polymerization efficiency through ceramics. Dent. Mater. 2008, 24, 908–914. [Google Scholar] [CrossRef]
- Della Bona, A.; Nogueira, A.D.; Pecho, O.E. Optical properties of CAD-CAM ceramic systems. J. Dent. 2014, 42, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.K.; Kim, S.H.; Lee, J.B.; Ha, S.R. Effects of surface treatments on the translucency, opalescence and surface texture of dental monolithic zirconia ceramics. J. Prosthet. Dent. 2016, 115, 773–779. [Google Scholar] [CrossRef]
- McLean, J.W. New dental ceramics and esthetics. J. Esthet. Dent. 1995, 7, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Paniz, G.; Kim, Y.; Abualsaud, H.; Hirayama, H. Influence of framework design on the cervical color of metal-ceramic crowns. J. Prosthet. Dent. 2011, 106, 310–318. [Google Scholar] [CrossRef]
- Kobashigawa, A.I.; Angeletakis, C. Opalescence Fillers for Dental Restorative Composite. U.S. Patent 6,232,367, 15 May 2001. [Google Scholar]
- Lee, Y.K.; Lu, H.; Powers, J.M. Measurement of opalescence of resin composites. Dent. Mater. 2005, 21, 1068–1074. [Google Scholar] [CrossRef]
- Ilie, N.; Stawarcyk, B. Quantifiaction of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J. Prosthet. Dent. 2015, 113, 114–121. [Google Scholar] [CrossRef]
- Sethi, S.; Kakade, D.; Jambhekar, S.; Jain, V. An in vitro investigation to compare the surface roughness of auto glazed, reglazed and chairside polished surfaces of Ivoclar and Vita feldspathic porcelain. J. Indian Prosthodont. Soc. 2013, 13, 478–485. [Google Scholar] [CrossRef]
- Anusavice, K. Phillips’ Science of Dental Materials, 11th ed.; Elsevier: London, UK, 2003. [Google Scholar]
- Wright, M.D.; Masri, R.; Driscoll, C.F.; Romberg, E.; Thompson, G.A.; Runyan, D.A. Comparison of three systems for the polishing of an ultra-low fusing dental porcelain. J. Prosthet. Dent. 2004, 92, 486–490. [Google Scholar] [CrossRef]
- Vieira, A.C.; Oliveira, M.C.; Lima, E.M.; Rambob, I.; Leite, M. Evaluation of the Surface Roughness in Dental Ceramics Submitted to Different Finishing and Polishing Methods. J. Indian Prosthodont. Soc. 2013, 13, 290–295. [Google Scholar] [CrossRef]
- Haralur, S.B. Evaluation of the efficiency of manual polishing over auto glazed and overglazed porcelain and its effect on plaque accumulation. J. Adv. Prosthodont. 2012, 4, 179–186. [Google Scholar] [CrossRef]
- David, H.B.; Maloney, L.T. Surface color perception and equivalent illumination models. J. Vis. 2011, 11, 1. [Google Scholar]
- Hamza, T.A.; Alameldin, A.A.; Elkouedi, A.Y.; Wee, A.G. Effect of artificial accelerated aging on surface roughness and color stability of different ceramic restorations. Stomatol. Dis. Sci. 2017, 1, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.H.; Catelan, A.; Albuquerque Guedes, A.P.; Umeda Suzuki, T.Y.; de Lima Godas, A.G.; Fraga Briso, A.L.; Bedran-Russo, A.K. Effect of thermocycling on the roughness of nanofilm, microfilm and micro-hybrid composites. Acta Odontol. Scand. 2015, 73, 176–181. [Google Scholar] [CrossRef]
- Subaşı, M.G.; Alp, G.; Johnston, W.M.; Yilmaz, B. Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J. Prosthet. Dent. 2018, 120, 603–608. [Google Scholar] [CrossRef]
- Yuan, J.C.C.; Barão, V.A.R.; Wee, A.G.; Alfaro, M.F.; Afshari, F.S.; Sukotjo, C. Effect of brushing and thermocycling on the shade and surface roughness of CAD-CAM ceramic restorations. J. Prosthet. Dent. 2017, 119, 1000–1006. [Google Scholar] [CrossRef]
- Brodbelt, R.H.W.; O’brien, W.J.; Fan, P.L.; Frazer-Dib, J.G.; Yu, R. Translucency of human dental enamel. J. Dent. Res. 1981, 60, 1749–1753. [Google Scholar] [CrossRef]
- Ardu, S.; Feilzer, A.J.; Devigus, A.; Krejci, I. Quantitative clinical evaluation of esthetic properties of incisors. Dent. Mater. 2008, 24, 333–340. [Google Scholar] [CrossRef]
- Gürdal, I.; Atay, A.; Eichberger, M.; Cal, E.; Üsümez, A.; Stawarczyk, B. Colour change of CAD-CAM materials and composite resin cements after thermocycling. J. Prosthet. Dent. 2018, 120, 546–552. [Google Scholar] [CrossRef]
- Ardu, S.; Braut, V.; Gutemberg, D.; Krejci, I.; Dietschi, D.; Feilzer, A.J. A long term laboratory test on training susceptibility of esthetic composites resin materials. Quintessence Int. 2010, 41, 695–702. [Google Scholar]
- Bagis, B.; Turgut, S. Optical properties of current ceramics systems for laminate veneers. J. Dent. 2013, 41, e24–e30. [Google Scholar] [CrossRef]
- Minami, H.; Hori, S.; Kurashige, H.; Murahara, S.; Muraguchi, K.; Minesaki, Y.; Tanaka, T. Effects of thermal cycling on the surface texture of restorative composite materials. Dent. Mater. J. 2007, 26, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.F.; Feng, L.; Serban, D.; Malmstrom, H.S. Effects of common beverage colorants on color stability of dental composites resins: The utility of the thermocycling stain challenge model in vitro. J. Dent. 2012, 40, e48–e56. [Google Scholar] [CrossRef]
- Alp, G.; Subasi, M.G.; Johnston, W.M.; Yilmaz, B. Effect of surface treatments and coffee thermocycling on the color and translucency of CAD/CAM monolithic glass ceramic. J. Prosthet. Dent. 2018, 120, 263–268. [Google Scholar] [CrossRef]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef]
- Alraheam, I.A.; Donovan, T.; Boushell, L.; Cook, R.; Ritter, A.V.; Sulaiman, T.A. Fracture load of two thicknesses of different zirconia types after fatiguing and thermocycling. J. Prosthet. Dent. 2019, in press. [Google Scholar] [CrossRef]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Yu, B.; Ahn, J.S.; Lee, Y.K. Measurement of translucency of tooth enamel and dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef]
- Zum Gahr, K.H.; Bundschuh, W.; Zimmerlin, B. Effect of grain size on friction and sliding wear on oxide ceramics. Wear 1993, 162, 269–279. [Google Scholar] [CrossRef]
- He, Y.; Winnubst, L.; Burggraaf, A.J.; Verweij, H.; van der Varst, P.G.T.; de With, B. Grain size dependence of sliding wears tetragonal zirconia polycrystals. J. Am. Ceram. Soc. 1996, 79, 3090–3096. [Google Scholar] [CrossRef] [Green Version]
- Amer, R.; Kürklü, D.; Johnston, W. Effect of simulated mastication on the surface roughness of three ceramic systems. J. Prosthet. Dent. 2015, 114, 260–265. [Google Scholar] [CrossRef]
- Hallmann, L.; Ulmer, P.; Kern, M. Effect of microstructure on the mechanical properties of lithium disilicate glass ceramic. J. Mech. Behav. Biomed. Mater. 2018, 82, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Bollenl, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
Material | Composition | Manufacturer | Translucency/Shade |
---|---|---|---|
1. Vita PM9 FP (heat-pressed feldspathic glass-ceramic) | 50% of Leucite reinforced glass-ceramic (size 10–15 µm). | Vita Zahnfabrick, Bad Säckingen, Germany | MT/A2 |
2. IPS Emax Press LDSP (heat-pressed lithium disilicate ceramic) | lithium disilicate crystals (approx. 70%), Li2Si2O5 crystals measure 3 to 6 µm in length. | Ivoclar Vivadent, Ellwangen, Germany | MT/A2 |
3. Celtra Press ZLSP (zirconia reinforced lithium silicate glass-ceramic) | a glass matrix and lithium disilicate crystals 1.5 µm plus nanoscale lithium 10% zirconia (ZrO2) | Dentsply, Hanau, Germany | MT/A2 |
Material | Composition | Manufacturer | Translucency/Shade |
---|---|---|---|
1. Vita Mark II FM (milled feldspathic glass-ceramic) | <20 wt% feldspathic particles (average particle size 4 µm) >80 wt% glass matrix | Vita Zahnfabrick, Bad Säckingen, Germany | MT/A2 |
2. IPS Emax CAD LDM (milled lithium disilicate glass-ceramic) | 70 vol% of the crystalline phase incorporated in the glassy matrix the average particle size 0.2–1.0 µm | Ivoclar Vivadent, Ellwangen, Germany | MT/A2 |
3. Vita Suprinity ZLSM (milled zirconia reinforced lithium silicate glass-ceramic) | The silica content of 55–65 wt% the lithia (15–21 wt%) zirconia (8–12 wt%) nanoparticle size 0.5–0.7 µm | Vita Zahnfabrick, Bad Säckingen, Germany | MT/A2 |
Vita PM9 | Emax Press | Celtra Press | |
---|---|---|---|
Starting temperature | 700 °C | 700 °C | 700 °C |
Hold time | 20 min | 29 min | 30 min |
Vacuum level | 47 hPa | 47 hPa | 45 hPa |
Press time | 10 min | 1 min | 3 min |
Heat rate | 50 °C/min | 60 °C/min | 40 °C/min |
Press temperature | 1000 °C | 915 °C | 860 °C |
Press pressure | 3 bar | 3 bar | 3 bar |
Type of Ceramic | Type of Glaze |
---|---|
1. Vita PM9 FP | Vita Akzent Plus Glaze LT (Vita Zahnfabrick, Bad Säckingen, Germany) |
2. IPS Emax Press LDP | Emax Ceram (Ivoclar Vivadent, Ellwangen, Germany) |
3. Celtra Press ZLSP | Dentsply Universal stain (Dentsply, Hanau, Germany) |
Type of Ceramic | p-Value |
---|---|
FPG | 0.001 |
FPP | 0.7 |
LDPG | 0.03 |
LDPP | 0.5 |
ZLSPG | <0.001 |
ZLSPP | <0.001 |
FMG | <0.001 |
FMP | 0.3 |
LDMG | 0.06 |
LDMP | 0.02 |
ZLSMG | 0.001 |
ZLSMP | 0.01 |
Type of Ceramic | p-Value |
---|---|
FPG | 0.28 |
FPP | 0.56 |
LDPG | 0.46 |
LDPP | 0.41 |
ZLSPG | <0.0001 |
ZLSPP | <0.0001 |
FMG | <0.0001 |
FMP | <0.0001 |
LDMG | 0.0002 |
LDPP | 0.0001 |
ZLSMG | 0.0108 |
ZLSMP | 0.3308 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliu, R.-D.; Porojan, S.D.; Bîrdeanu, M.I.; Porojan, L. Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials 2020, 13, 381. https://doi.org/10.3390/ma13020381
Vasiliu R-D, Porojan SD, Bîrdeanu MI, Porojan L. Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials. 2020; 13(2):381. https://doi.org/10.3390/ma13020381
Chicago/Turabian StyleVasiliu, Roxana-Diana, Sorin Daniel Porojan, Mihaela Ionela Bîrdeanu, and Liliana Porojan. 2020. "Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics" Materials 13, no. 2: 381. https://doi.org/10.3390/ma13020381
APA StyleVasiliu, R.-D., Porojan, S. D., Bîrdeanu, M. I., & Porojan, L. (2020). Effect of Thermocycling, Surface Treatments and Microstructure on the Optical Properties and Roughness of CAD-CAM and Heat-Pressed Glass Ceramics. Materials, 13(2), 381. https://doi.org/10.3390/ma13020381